CDS&E: GOALI: Paints/Coatings In-Silico Product Design and Real-Time Product-Quality Monitoring and Control

CDS

基本信息

  • 批准号:
    1953176
  • 负责人:
  • 金额:
    $ 30.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Modern paint/coating (P/C) products are complex mixtures of chemicals that include polymer resins, pigment dispersants, and other additives. To describe P/C qualities such as color strength, durability, and shelf life, a vast set of consumer specifications are required. The dependence of these consumer attributes on the properties and amounts of the P/C ingredients and the preparation conditions is complex, poorly understood, and currently impossible to predict using physically based mathematical models. This is in contrast to the P/C ingredients themselves, however, whose properties generally are well-understood and can be predicted in advance by rigorous chemical reaction and mixing models. This project is expected to develop a model capable of predicting final properties of these complex mixtures. This is expected to aid in product design, and real-time quality prediction, defect detection and diagnosis, and product quality monitoring and control. The expected economic impact of this work is faster design and customization of paint/coating (P/C) products. This research program aims to overcome the challenges of predicting P/C final product qualities using a hybrid simulation approach that combines machine learning methods with physically-based modeling elements. At its core, decades of manufacturing data from the industrial partner of this collaboration will be used to uncover relationships between manufacturing processing conditions and the poorly understood P/C product qualities using a statistical machine learning technique. This will create a black-box model in the form of an artificial neural network which will take as input the predictions of the physically based ingredient modeling elements and will predict final P/C qualities. This research will produce robust computational methods for in-silico P/C product design, real-time P/C product quality prediction, product defect detection and diagnosis, and will enable methods to monitor and control P/C product quality. The computational methods can be applied directly or extended to other manufacturing processes. The team plans to integrate this research systematically into undergraduate education through the Drexel Co-op Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代油漆/涂料(P/C)产品是包括聚合物树脂,色素分散剂和其他添加剂在内的化学物质的复杂混合物。为了描述诸如色彩强度,耐用性和保质期之类的P/C品质,需要大量的消费者规格。这些消费者属性对P/C成分的属性和数量的依赖性和制备条件很复杂,了解不足,目前无法使用基于物理的数学模型进行预测。这与P/C成分本身形成鲜明对比,但是,其特性通常是可以很好地理解的,并且可以通过严格的化学反应和混合模型预测。预计该项目将开发一个能够预测这些复杂混合物的最终性质的模型。预计这将有助于产品设计以及实时质量预测,缺陷检测和诊断以及产品质量监测和控制。这项工作的预期经济影响是涂料/涂料(P/C)产品的更快设计和定制。 该研究计划旨在使用混合模拟方法来克服预测P/C最终产品质量的挑战,该方法将机器学习方法与基于物理的建模元素相结合。从本质上讲,该合作工业合作伙伴的数十年制造数据将用于发现制造过程条件与使用统计机器学习技术的P/C产品质量之间的关系之间的关系。这将以人工神经网络的形式创建一个黑框模型,该模型将作为输入基于物理的成分建模元素的预测,并将预测最终的P/C质量。这项研究将为内部P/C产品设计,实时P/C产品质量预测,产品缺陷检测和诊断提供强大的计算方法,并将启用方法来监视和控制P/C产品质量。计算方法可以直接应用或扩展到其他制造过程。该团队计划通过Drexel合作计划将这项研究系统地整合到本科教育中。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data‐driven prediction and optimization of liquid wettability of an initiated chemical vapor deposition‐produced fluoropolymer
数据驱动的化学气相沉积生产的含氟聚合物的液体润湿性预测和优化
  • DOI:
    10.1002/aic.17674
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Schwartz, Daniel;Nguyen, Tien;Chen, Zhengtao;Lau, Kenneth K.;Grady, Michael C.;Shokoufandeh, Ali;Soroush, Masoud
  • 通讯作者:
    Soroush, Masoud
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masoud Soroush其他文献

Masoud Soroush的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Masoud Soroush', 18)}}的其他基金

Participant Support for Students to Attend the International Conference and Workshop on Mxenes; Philadelphia, Pennsylvania; 5-7 August 2024
为学生参加 Mxenes 国际会议和研讨会提供支持;
  • 批准号:
    2416797
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
Student Support to Attend the International Workshop on MXenes; Philadelphia, Pennsylvania; 1-3 August 2022
支持学生参加 MXenes 国际研讨会;
  • 批准号:
    2228018
  • 财政年份:
    2022
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
FMRG: Cyber: A Cyber Nanomanufacturing Platform for Large-scale Production of High-quality MXenes and Other Two-dimensional Nanomaterials
FMRG:Cyber​​:用于大规模生产高质量 MXene 和其他二维纳米材料的网络纳米制造平台
  • 批准号:
    2134607
  • 财政年份:
    2021
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
REU Site: Smart Manufacturing Research Experiences for Undergraduates (SMREU)
REU 网站:本科生智能制造研究体验 (SMREU)
  • 批准号:
    1949718
  • 财政年份:
    2020
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: On-Demand Continuous-Flow Production of High Performance Acrylic Resins: from Electronic-Level Modeling to Modular Process Intensification
GOALI:合作研究:高性能丙烯酸树脂的按需连续流生产:从电子级建模到模块化过程强化
  • 批准号:
    1804285
  • 财政年份:
    2018
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
  • 批准号:
    1704915
  • 财政年份:
    2017
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
  • 批准号:
    1236180
  • 财政年份:
    2012
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
Collaborative Project: GOALI: Acrylic Resins Product and Process Design through Combined Use of Quantum Chemical Calculations and Spectroscopic Methods
合作项目:GOALI:结合使用量子化学计算和光谱方法进行丙烯酸树脂产品和工艺设计
  • 批准号:
    1160169
  • 财政年份:
    2012
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI: Synergistic Improvement of Process Safety and Product Quality Using Process Databases
合作研究:GOALI:使用过程数据库协同改进过程安全和产品质量
  • 批准号:
    1066461
  • 财政年份:
    2011
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI: Design of Chemically Self-Regulated, Acrylic Coatings Processes through Iterative Use of Chemical Quantum Calculations and Spectroscopic Methods
合作研究:GOALI:通过迭代使用化学量子计算和光谱方法设计化学自调节丙烯酸涂料工艺
  • 批准号:
    0932882
  • 财政年份:
    2009
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于光谱知识数据驱动的临近空间高超声速目标识别方法
  • 批准号:
    62371375
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向SAR ATR的介质与金属混合目标散射中心正向建模研究
  • 批准号:
    62301215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宁夏典型地物目标分类及其多源遥感影像信息处理模型与算法研究
  • 批准号:
    42361056
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于多目标决策的流域型城市群建设用地减量发展格局、响应与调控:以长江中游城市群为例
  • 批准号:
    42371286
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
面向高代价多目标组合优化问题的代理模型及演化算法研究
  • 批准号:
    62306174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2427203
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
  • 批准号:
    2315343
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
  • 批准号:
    2401564
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了