CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications

CDS

基本信息

  • 批准号:
    1952992
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

In this era of Big Data, deep learning has become a burgeoning domain with immense potential to advance science, technology, and human life. Despite the tremendous practical success of deep neural networks (DNNs) in various data-intensive machine learning applications, there still remain many open problems to be addressed: (1) DNNs tend to suffer from overfitting when the available training data are scarce, which renders them less effective in the small data regime. (2) DNNs have shown to have the capability of perfectly “memorizing” random training samples, making them less trustworthy when the training data are noisy and corrupted. (3) While symmetry is ubiquitous in machine learning (e.g., in image classification, the class label of an image remains the same if the image is spatially rescaled and translated,) generic DNN architectures typically destroy such symmetry in the representation, which leads to significant redundancy in the model to “memorize” such information from the data. The goal of this project is to address these challenges in deep learning by exploiting the low-dimensional geometry and symmetry within the data and their network representations, aiming at developing new theories and methodologies for deep learning regularization that can lead to tangible advances in machine learning and artificial intelligence especially in the small/corrupted data regime. In addition the project also provides research training opportunities for graduate students.The overarching theme of this project is to leverage recent progress in mathematical methods from differential geometry and applied harmonic analysis to improve the stability, reliability, data-efficiency, and interpretability of deep learning. This will involve the development of both foundational theories and efficient algorithms to achieve the following three objectives: (1) The development of manifold-based DNN regularizations with significantly improved generalization performance by focusing on the topology and geometry of both the input data and their representations. This will unlock the potential of deep learning in the small data regime. (2) Establishing and analyzing an innovative framework of imposing geometric constraint in deep learning that has immense potential of limiting the memorizing capacity of DNN. The mathematical analysis of the training dynamics of such model will shed light on the understanding of the fundamental difference between “memorization” and generalization in deep learning. (3) The construction of deformation robust symmetry-preserving DNN architectures for various symmetry transformations on different data domains. By "hardwiring" the symmetry information into the deformation robust representations, the regularized DNN models will have improved performance and interpretability with reduced redundancy and model size. In terms of application, the project will demonstrate and deploy the proposed theories in real-world machine learning tasks, such as object recognition, localization, and segmentation. The techniques developed in this project will be widely applicable across different disciplines, providing fundamental building blocks for the next generation of mathematical tools for the computational modeling of Big Data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大数据时代,深度学习已成为一个新兴的领域,具有推动科学,技术和人类生活的巨大潜力。尽管深度神经元网络(DNN)在各种数据密集型机器学习应用中取得了巨大实际成功,但仍有许多开放问题要解决:(1)当可用的培训数据稀缺时,DNN往往会遭受过度拟合的困扰,这使得它们在小型数据体系中的有效性降低。 (2)DNNS已证明具有完美“记忆”随机训练样本的能力,在训练数据噪声和损坏时,它们的信任程度就不值得。 (3)虽然对称性在机器学习中无处不在(例如,在图像分类中,如果图像的类标签在空间恢复和翻译上,则图像的类标签保持不变,)通用DNN架构通常会在表示形式中破坏这种对称性,这会导致模型中“记住”此类信息的显着冗余,从而从数据中获得了此类信息。该项目的目的是通过利用数据及其网络表示中的低维几何形状和对称性来应对深度学习的这些挑战,旨在为深度学习法规开发新的理论和方法,从而可以在机器学习和人工智能方面有形地进展,尤其是在小型/损坏的数据方面。此外,该项目还为研究生提供了研究培训机会。该项目的总体主题是利用差异几何形状和应用谐波分析的数学方法的最新进展,以提高深度学习的稳定性,可靠性,数据效率和解释性。这将涉及基础理论和有效算法的发展,以实现以下三个目标:(1)基于多种的DNN的开发通过着重于输入数据及其表示的拓扑和几何形状,从而显着改善了泛化性能。这将释放小型数据制度中深度学习的潜力。 (2)建立和分析在深度学习中施加几何约束的创新框架,具有限制DNN记忆能力的巨大潜力。对这种模型的训练动力学的数学分析将阐明对“纪念”和深度学习中的概括之间的基本差异的理解。 (3)构建变形鲁棒对称性的DNN体系结构,用于不同数据域上的各种对称性转换。通过将对称信息“硬化”到变形鲁棒表示形式中,正则化DNN模型将具有提高的性能和可解释性,并减少冗余和模型大小。就应用程序而言,该项目将在现实世界的机器学习任务中演示和部署所提出的理论,例如对象识别,本地化和细分。该项目中开发的技术将在不同的学科中广泛适用,为下一代数学工具提供基本的构建块,用于大数据的计算建模。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Wei Zhu其他文献

Promoted "Click" SERS Detection for Precise Intracellular Imaging of Caspase-3
促进 Caspase-3 精确细胞内成像的“点击”SERS 检测
  • DOI:
    10.1021/acs.analchem.0c04997
    10.1021/acs.analchem.0c04997
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wei Zhu;Chun-Yang Wang;Ji-Ming Hu;Ai-Guo Shen
    Wei Zhu;Chun-Yang Wang;Ji-Ming Hu;Ai-Guo Shen
  • 通讯作者:
    Ai-Guo Shen
    Ai-Guo Shen
Novel pillar[5]arene-based supramolecular organic framework gel for ultrasensitive response Fe3 and F(-)in water
新型柱[5]芳烃基超分子有机骨架凝胶,用于超灵敏响应水中的 Fe3 和 F(-)
  • DOI:
    10.1016/j.msec.2019.02.094
    10.1016/j.msec.2019.02.094
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    You-Ming Zhang;Jun-Xia He;Wei Zhu;Yong-Fu Li;Hu Fang;Hong Yao;Tai-Bao Wei;Qi Lin
    You-Ming Zhang;Jun-Xia He;Wei Zhu;Yong-Fu Li;Hu Fang;Hong Yao;Tai-Bao Wei;Qi Lin
  • 通讯作者:
    Qi Lin
    Qi Lin
Effects of doping and rapid thermal processing in Y doped CdO thin films
Y 掺杂 CdO 薄膜中掺杂和快速热处理的影响
  • DOI:
    10.1016/j.jallcom.2018.10.288
    10.1016/j.jallcom.2018.10.288
  • 发表时间:
    2019-03
    2019-03
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Menting Xie;Wei Zhu;Kin Man Yu;Zishu Zhu;Guanzhong Wang
    Menting Xie;Wei Zhu;Kin Man Yu;Zishu Zhu;Guanzhong Wang
  • 通讯作者:
    Guanzhong Wang
    Guanzhong Wang
Contributions of gluon recombination to saturation phenomena
胶子复合对饱和现象的贡献
The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing process
热压制绒工艺制备超疏水PTFE/UHMWPE复合材料表面
共 668 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 134
前往

Wei Zhu的其他基金

CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
  • 批准号:
    2140982
    2140982
  • 财政年份:
    2021
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
SBIR Phase II: A novel 3D bioprinting system for rapid high-throughput tissue fabrication
SBIR II 期:一种用于快速高通量组织制造的新型 3D 生物打印系统
  • 批准号:
    2035835
    2035835
  • 财政年份:
    2021
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Cooperative Agreement
    Cooperative Agreement
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    2052525
    2052525
  • 财政年份:
    2020
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
SBIR Phase I: 3D Printing of Bisphenol A-free Polycarbonates for Customizable Cell/Tissue Culture Platforms
SBIR 第一阶段:用于可定制细胞/组织培养平台的不含双酚 A 的聚碳酸酯 3D 打印
  • 批准号:
    1819239
    1819239
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Simulation of Liquid Crystal Elastomers
液晶弹性体的模拟
  • 批准号:
    1016504
    1016504
  • 财政年份:
    2010
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Almgren's multiple-valued functions and geometric measure theory
阿尔姆格伦的多值函数和几何测度论
  • 批准号:
    0905347
    0905347
  • 财政年份:
    2009
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

大脑神经回路间信息传递的拓扑几何学功能磁共振成像研究:以选择性视觉注意为应用载体
  • 批准号:
    61871105
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
奇点理论在微分拓扑和微分几何学中的应用研究
  • 批准号:
    11671070
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
应用营养几何学原理探讨秦岭大熊猫的营养需求和觅食对策
  • 批准号:
    31370414
  • 批准年份:
    2013
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
样条函数在离散数学中的应用
  • 批准号:
    11226326
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
典型群的几何学在图论组合中的应用
  • 批准号:
    11126280
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
  • 批准号:
    10761609
    10761609
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
The X-VISUAL (X-ray Visualized Indicator for Screw-strain Under Applied Load)
X-VISUAL(施加负载下螺钉应变的 X 射线可视化指示器)
  • 批准号:
    10822470
    10822470
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
  • 批准号:
    2142724
    2142724
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
    $ 15.5万
  • 项目类别:
    Standard Grant
    Standard Grant