CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
基本信息
- 批准号:1948510
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to identify disease-specific changes in human brain connectivity in early stages by developing a novel Deep Learning framework applicable to data with arbitrary structure such as graphs. This is important because regional brain variations often do not manifest as cognitive changes until significant brain pathology has accumulated, and a better understanding of the brain may be possible by characterizing changes in connectivity defined by relationships between different brain regions. Recent techniques with Deep Learning have demonstrated successful results with human-level precision in various image analysis tasks such as image classification, object detection, and image segmentation, but they cannot be directly applied to analyze brain connectivity because of its arbitrary structure. The key is to derive effective representation of the data; however, it is still unclear how to derive sophisticated representations for complex data such as graphs and it often requires large-scale datasets. A novel Graph Deep Learning technique that can detect subtle changes in brain connectivity with small numbers of samples is therefore necessary. Success of this project will facilitate understanding of the relationship between brain connectivity and neurodegenerative disease, mechanisms for early diagnosis, and discovery of new treatments. Technically, the overarching goal of this project is to design a Convolution Neural Network (CNN) model for graph data and to determine the extent to which it yields new scientific findings in neuroscience. To meet the goal, this project will focus on: 1) Developing a novel transform for graphs (e.g., brain networks) for their novel multi-resolution representations that are theoretically described by convolution, 2) Developing an efficient deep learning architecture for graphs that operates within a small sample-size regime to improve performance of disease diagnosis and sensitivity of statistical inferences, and 3) Validating the developed models on a simulation study as well as real brain network datasets for Alzheimer’s Disease to characterize disease-specific patterns in the brain connectivity. The developed framework will benefit various areas of neuroimaging research with functional and structural brain connectivity that are locally carried at small scales, and spur development of further studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发适用于具有任意结构(例如图形)数据的新型深度学习框架来确定早期疾病特异性变化。这很重要,因为在积累了重要的大脑病理之前,区域大脑的变化通常不会表现为认知变化,并且通过表征由不同大脑区域之间关系定义的连通性变化,可以更好地理解大脑。在各种图像分析任务(例如图像分类,对象检测和图像分割)中,具有深入学习的最新技术证明了人级精度的成功结果,但是由于其任意结构,它们无法直接应用于分析大脑连接性。关键是得出有效的数据表示;但是,目前尚不清楚如何得出复杂数据(例如图形)的复杂表示形式,并且通常需要大规模数据集。因此,需要一种新的图形深度学习技术,可以检测出与少量样品的大脑连接性的细微变化。该项目的成功将有助于理解大脑连通性与神经退行性疾病之间的关系,早期诊断的机制以及发现新治疗方法。从技术上讲,该项目的总体目标是为图数据设计一个卷积神经网络(CNN)模型,并确定其在神经科学中产生新的科学发现的程度。为了实现目标,该项目将重点关注:1)为其新颖的图形(例如大脑网络)开发其新颖的多分辨率表示形式(理论上是通过卷积上描述的,它们在图形上进行了有效的深度学习体系结构,2)在小样本尺寸型中运行的图形有效的深度学习体系结构,该体系在一个小样本大小的方案中运行,以改善疾病诊断和敏感性的统计型型型模型,并在3)上有效地研究大脑的表现。阿尔茨海默氏病在大脑连通性中表征特异性疾病的模式。开发的框架将通过本地携带的功能和结构性大脑连通性受益于神经成像研究的各个领域,并在小规模上携带,并刺激了进一步研究的发展。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响来审查标准,通过评估来诚实地对其进行评估。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic covariance estimation via predictive Wishart process with an application on brain connectivity estimation
- DOI:10.1016/j.csda.2023.107763
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Rui Meng;Fan Yang;Won Hwa Kim
- 通讯作者:Rui Meng;Fan Yang;Won Hwa Kim
Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders
学习多分辨率图边缘嵌入以发现神经系统疾病中的大脑网络功能障碍
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ma, Xin;Wu, Guorong;Hwang, Seongjae;Kim, Won Hwa
- 通讯作者:Kim, Won Hwa
Image-Label Recovery on Fashion Data Using Image Similarity from Triple Siamese Network
- DOI:10.3390/technologies9010010
- 发表时间:2021-03-01
- 期刊:
- 影响因子:3.6
- 作者:Banerjee, Debapriya;Kyrarini, Maria;Kim, Won Hwa
- 通讯作者:Kim, Won Hwa
Learning Covariance-Based Multi-Scale Representation of Neuroimaging Measures for Alzheimer Classification
- DOI:10.1109/isbi53787.2023.10230493
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Seung-Bin Baek;Injun Choi;Mustafa Dere;Minjeong Kim;Guorong Wu;Won Hwa Kim
- 通讯作者:Seung-Bin Baek;Injun Choi;Mustafa Dere;Minjeong Kim;Guorong Wu;Won Hwa Kim
Locally Normalized Soft Contrastive Clustering for Compact Clusters
- DOI:10.24963/ijcai.2022/460
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Xin Ma;Won Hwa Kim
- 通讯作者:Xin Ma;Won Hwa Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Jiang其他文献
Exploiting Workload Characteristics and Service Diversity to Improve the Availability of Cloud Storage Systems
利用工作负载特征和服务多样性提高云存储系统的可用性
- DOI:
10.1109/tpds.2015.2475273 - 发表时间:
2016-07 - 期刊:
- 影响因子:0
- 作者:
Bo Mao;Suzhen Wu;Hong Jiang - 通讯作者:
Hong Jiang
Shift control strategy and experimental validation for dry dual clutch transmissions
干式双离合变速器换档控制策略及实验验证
- DOI:
10.1016/j.mechmachtheory.2014.01.013 - 发表时间:
2014-05 - 期刊:
- 影响因子:5.2
- 作者:
Yonggang Liu;Datong Qin;Hong Jiang;Yi Zhang - 通讯作者:
Yi Zhang
Performance properties of combined heterogeneous networks
组合异构网络的性能特性
- DOI:
10.1109/ipdps.2003.1213502 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
N. Mohamed;J. Al;Hong Jiang;D. Swanson - 通讯作者:
D. Swanson
Differentiation of lipsticks using the shifted excitation Raman difference spectroscopy supported by chemometric methods
使用化学计量学方法支持的位移激发拉曼差异光谱区分口红
- DOI:
10.1117/12.2579697 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jin Zhang;Hong Jiang;Feng Liu;Bin Duan - 通讯作者:
Bin Duan
Revisiting the GW approach to d- and f-electron oxides
重新审视 d 和 f 电子氧化物的 GW 方法
- DOI:
10.1103/physrevb.97.245132 - 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Hong Jiang - 通讯作者:
Hong Jiang
Hong Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Jiang', 18)}}的其他基金
SHF: Small: A Distributed Scalable End-to-End Tail Latency SLO Guaranteed Resource Management Framework for Microservices
SHF:Small:分布式可扩展端到端尾部延迟 SLO 保证的微服务资源管理框架
- 批准号:
2226117 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SHF: SMALL: STITCH: Request-SLO-Aware Orchestration for Large-scale Sensing Services over IoT-Edge-Cloud Hierarchy
SHF:SMALL:STITCH:基于 IoT-边缘-云层次结构的大规模传感服务的请求 SLO 感知编排
- 批准号:
2008835 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Historical Ecology of Coral Reef Ecosystems in the Hawaiian Archipelago
博士论文研究:夏威夷群岛珊瑚礁生态系统的历史生态学
- 批准号:
0926768 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing
HEC:协作研究:SAM^2 工具包:用于高端计算的可扩展和自适应元数据管理
- 批准号:
0621526 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SBIR Phase I: I-MINDS: Intelligent Multiagent Infrastructure for Distributed Systems in Education
SBIR 第一阶段:I-MINDS:教育分布式系统的智能多代理基础设施
- 批准号:
0441249 - 财政年份:2005
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
- 批准号:82374375
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:32200568
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
- 批准号:
2245712 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
- 批准号:
2246157 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: RI: Secure Multi-Agent Reinforcement Learning Algorithms
CRII:RI:安全多代理强化学习算法
- 批准号:
2105007 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: RI: Learning a Timely Semantic Resource from Social Media Data
CRII:RI:从社交媒体数据中学习及时的语义资源
- 批准号:
2038457 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
2053269 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant