CAREER: Understanding the Role of Inductive Electric Fields in Particle Energization

职业:了解感应电场在粒子能量化中的作用

基本信息

  • 批准号:
    1945573
  • 负责人:
  • 金额:
    $ 77.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The space environment surrounding Earth is filled with plasma flowing among magnetic and electric fields. Particles in this plasma interact with these fields, gaining energy that affects their motion and interactions throughout this region of space, known as the magnetosphere. The understanding of plasmas embedded in magnetic fields, the goal of this project, has many scientific, industrial, national security, and medical applications - including direct relevance to space weather modeling and forecasting. The project will support research for an early career female researcher, graduate student, post-doctoral researcher, and four undergraduate students each year. Additionally, 3D visualizations of abstract electricity and magnetism concepts will be made in Virtual Reality - an immersive, exploratory, and engaging environment. The visualizations will be used for physics curricula aimed towards undergraduate engineering, science, mathematics, and medical students and high school students. The primary objective of this project is to fill the gap in our understanding of particle accelerations in the terrestrial magnetosphere and determine how the nature and structure of the electric field contributes to energization and particle transport in this region. Specifically, the goal is to understand how particle injections are formed and driven by different sources of electric field (potential vs. inductive) and where they originate from. To do this, the work includes (1) determining the role of inductive electric fields to ring current particle energization leading to understanding of the injection driver mechanism; (2) determining and quantifying the role of inductive electric fields due to intensification of the magnetopause current vs inductive electric fields due to magnetic field dipolarizations to ring current development and decay; and (3) determining the role of inductive electric fields in predicting geomagnetic activity. This involves detailed numerical computer simulations and data-model comparisons with in-situ measurements from NASA's Magnetosphere Multiscale (MMS) and Van Allen Probes missions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球周围的空间环境充满了磁场和电场之间流动的等离子体。该等离子体中的颗粒与这些磁场相互作用,获得了影响其运动和相互作用的能量,该区域在这个空间区域(称为磁层)。该项目的目标是对磁场中嵌入的等离子体的理解,具有许多科学,工业,国家安全和医疗应用,包括与太空天气建模和预测直接相关。该项目将为早期职业女性研究员,研究生,博士后研究人员和四名本科生提供研究。此外,将在虚拟现实中制定抽象电力和磁性概念的3D可视化 - 一种沉浸式,探索性和引人入胜的环境。可视化将用于针对本科工程,科学,数学以及医学生和高中生的物理课程。该项目的主要目的是填补我们对地面磁层颗粒加速度的理解的空白,并确定电场的性质和结构如何促进该区域的通电和颗粒传输。具体而言,目标是了解如何由不同的电场来源(电势与电感)形成和驱动粒子注射及其起源。为此,工作包括(1)确定电感电场充电电流颗粒能量的作用,从而了解注射驱动器机制; (2)由于磁场偶极化引起的磁场电流与电感电场的加强,确定和量化电感电场的作用,以使电流的发育和衰减响起; (3)确定电感电场在预测地磁活性中的作用。这涉及详细的数值计算机模拟和数据模型比较与NASA的磁层多尺度(MMS)和Van Allen探针任务中的原位测量值。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力和知识分子的智力符号和支持的支持。更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Reality Laboratory Experiences for Electricity and Magnetism Courses
电学和磁学课程的虚拟现实实验室体验
The Effects of Inductive Electric Field on the Spatial and Temporal Evolution of the Inner Magnetospheric Ring Current
感应电场对内磁层环流时空演化的影响
A Brief Review of the Ring Current and Outstanding Problems
  • DOI:
    10.1002/9781119815624.ch20
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Ilie;M. F. Bashir;E. Kronberg
  • 通讯作者:
    R. Ilie;M. F. Bashir;E. Kronberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raluca Ilie其他文献

Assessing the role of oxygen on ring current formation and evolution through numerical experiments
通过数值实验评估氧对环电流形成和演化的作用
A review of N+ observations in the ionosphere-magnetosphere system
电离层-磁层系统中N观测的回顾
Scientific Priorities for the Earth’s Coupled Inner Magnetosphere: A System-of-Systems Perspective
地球耦合内磁层的科学优先事项:系统的系统视角
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth G. Claudepierre;Lunjin Chen;G. Delzanno;M. Gkioulidou;J. Goldstein;Raluca Ilie;A. Jaynes;V. Jordanova;L. Kepko;L. Kistler;Michael Liemohn;D. Malaspina;D. Turner
  • 通讯作者:
    D. Turner
Reconstruction Analysis of Global Ionospheric Outflow Patterns
全球电离层流出模式的重建分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Liemohn;Jörg;Raluca Ilie;N. Ganushkina;D. Welling;H. Elliott;M. Burleigh;Kaitlin Doublestein;Stephanie A. Colon‐Rodriguez;P. Dredger;Phil Valek
  • 通讯作者:
    Phil Valek
Synthesis of Diastereo- and Enantioenriched Homoallylic Alcohols with a Chiral CF3- and F-Bound Carbon
具有手性 CF3 和 F 键合碳的非对映体和对映体富集高烯丙醇的合成
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raluca Ilie;M. Liemohn;G. Tóth;N. Ganushkina;N. Ganushkina;L. Daldorff
  • 通讯作者:
    L. Daldorff

Raluca Ilie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raluca Ilie', 18)}}的其他基金

PREEVENTS Track 2: Collaborative Research: Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances
预防措施轨道 2:协作研究:地磁极端扰动恢复能力的综合危害分析
  • 批准号:
    1664078
  • 财政年份:
    2017
  • 资助金额:
    $ 77.4万
  • 项目类别:
    Continuing Grant
GEM: Quantifying the Effects of Inductive Electric Fields in the Terrestrial Magnetosphere
GEM:量化陆地磁层中感应电场的影响
  • 批准号:
    1602738
  • 财政年份:
    2017
  • 资助金额:
    $ 77.4万
  • 项目类别:
    Continuing Grant
GEM Postdoc: Analysis of Stormtime Plasma Transport in a Coupled Global Magnetosphere Model
GEM 博士后:耦合全球磁层模型中风暴期等离子体输运分析
  • 批准号:
    1027008
  • 财政年份:
    2011
  • 资助金额:
    $ 77.4万
  • 项目类别:
    Interagency Agreement

相似国自然基金

典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于全图表信息分析的科技文献细粒度理解
  • 批准号:
    72304215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多任务理解的复杂语义群体行为分析方法
  • 批准号:
    62306042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 77.4万
  • 项目类别:
CAREER: Understanding the Role of "Schadenfreude" in Intergroup Conflict
职业:理解“幸灾乐祸”在群体间冲突中的作用
  • 批准号:
    2340340
  • 财政年份:
    2024
  • 资助金额:
    $ 77.4万
  • 项目类别:
    Continuing Grant
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 77.4万
  • 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
  • 批准号:
    10716898
  • 财政年份:
    2023
  • 资助金额:
    $ 77.4万
  • 项目类别:
Genomic and bioinformatic approaches for understanding the effects of childhood adversity on primary tooth formation and caries development in young children
基因组和生物信息学方法用于了解童年逆境对幼儿乳牙形成和龋齿发展的影响
  • 批准号:
    10739519
  • 财政年份:
    2023
  • 资助金额:
    $ 77.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了