GEM: Quantifying the Effects of Inductive Electric Fields in the Terrestrial Magnetosphere

GEM:量化陆地磁层中感应电场的影响

基本信息

  • 批准号:
    1602738
  • 负责人:
  • 金额:
    $ 25.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

One of the major questions in magnetospheric physics is the issue of how the typical energy of solar wind and ionospheric particles becomes accelerated from energies in the range of a few eVs to energies of hundreds of keVs that are typically observed in the near Earth space. The need for this acceleration to occur implies the production within the magnetosphere of a potential that is applied to the particles moving along the geomagnetic flux tube. The challenging task in modeling this potential lies in producing an estimate of the inductive effects arising from the presence of a time-dependent magnetic field as compared with the potential that is a part of the plasma convection process across the geotail. The extent of this partition remains an unresolved question in geospace research. This award would model the physics of this acceleration mechanism to determine the magnitude of the inductive electric field caused by the temporal variation of the magnetic field as compared with the magnitude of the potential electric field source. The award will have the consequence that the relative contributions of potential and inductive electric field driven convection resulting in the development of the storm time ring current will for certain cases become quantified. A young woman scientist just beginning her faculty appointment as an assistant professor will be supported with this award.The PI would use a theoretical model to calculate the inductive component of the electric field. Knowledge of the electromagnetic fields is required to model accurately the acceleration processes and the transport of plasma within the inner magnetosphere. This approach would be applied to several preselected real event case studies as well as simplified and idealized input simulations. The former path would allow detailed data-model comparisons to determine which physical process dominates the dynamics of the magnetosphere. The latter path would provide insight into the systematic influences of various solar wind parameters. Knowledge of the relative contribution of potential versus inductive electric fields at intensifying the hot ion population would be used to study the connection between the macro-scale dynamics and micro-scale processes that govern this region and solidify comprehension of the physical processes controlling magnetosphere dynamics.
磁层物理学中的主要问题之一是,太阳风和电离层颗粒的典型能量如何从几个电动汽车的范围内的能量加速到在近地球空间中通常观察到的数百个KEV的能量。 这种加速度的需求意味着在磁层内的产生,该电势被应用于沿着地磁通量管移动的颗粒。 建模这种潜力的挑战性任务在于,与跨码头上等离子体对流过程的一部分相比,由时间依赖的磁场产生的电感效应估计。该分区的范围仍然是地球空间研究中尚未解决的问题。该奖项将对该加速机制的物理学进行建模,以确定与潜在电场源的大小相比,由磁场的时间变化引起的电感电场的大小。该奖项的结果是,潜在电场驱动的对流的相对贡献导致风暴时间环的发展在某些情况下将被量化。 一位年轻女科学家刚开始任命她作为助理教授的教师将获得该奖项的支持。PI将使用理论模型来计算电场的归纳成分。需要对电磁场的知识来准确地建模内部磁层内等离子体的加速过程和运输。这种方法将应用于几个预选的实际事件案例研究以及简化和理想化的输入模拟。 前路径将允许详细的数据模型比较,以确定哪种物理过程主导了磁层的动力学。 后一条路径将提供对各种太阳风参数的系统影响的见解。对加强热离子种群的潜在电场与电感电场的相对贡献的了解将用于研究控制该区域的宏观动力学和微尺度过程之间的联系,并巩固了控制磁层动力学的物理过程的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raluca Ilie其他文献

Assessing the role of oxygen on ring current formation and evolution through numerical experiments
通过数值实验评估氧对环电流形成和演化的作用
A review of N+ observations in the ionosphere-magnetosphere system
电离层-磁层系统中N观测的回顾
Scientific Priorities for the Earth’s Coupled Inner Magnetosphere: A System-of-Systems Perspective
地球耦合内磁层的科学优先事项:系统的系统视角
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth G. Claudepierre;Lunjin Chen;G. Delzanno;M. Gkioulidou;J. Goldstein;Raluca Ilie;A. Jaynes;V. Jordanova;L. Kepko;L. Kistler;Michael Liemohn;D. Malaspina;D. Turner
  • 通讯作者:
    D. Turner
Reconstruction Analysis of Global Ionospheric Outflow Patterns
全球电离层流出模式的重建分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Liemohn;Jörg;Raluca Ilie;N. Ganushkina;D. Welling;H. Elliott;M. Burleigh;Kaitlin Doublestein;Stephanie A. Colon‐Rodriguez;P. Dredger;Phil Valek
  • 通讯作者:
    Phil Valek
Synthesis of Diastereo- and Enantioenriched Homoallylic Alcohols with a Chiral CF3- and F-Bound Carbon
具有手性 CF3 和 F 键合碳的非对映体和对映体富集高烯丙醇的合成
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raluca Ilie;M. Liemohn;G. Tóth;N. Ganushkina;N. Ganushkina;L. Daldorff
  • 通讯作者:
    L. Daldorff

Raluca Ilie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raluca Ilie', 18)}}的其他基金

CAREER: Understanding the Role of Inductive Electric Fields in Particle Energization
职业:了解感应电场在粒子能量化中的作用
  • 批准号:
    1945573
  • 财政年份:
    2020
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances
预防措施轨道 2:协作研究:地磁极端扰动恢复能力的综合危害分析
  • 批准号:
    1664078
  • 财政年份:
    2017
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Continuing Grant
GEM Postdoc: Analysis of Stormtime Plasma Transport in a Coupled Global Magnetosphere Model
GEM 博士后:耦合全球磁层模型中风暴期等离子体输运分析
  • 批准号:
    1027008
  • 财政年份:
    2011
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Interagency Agreement

相似国自然基金

量化中国双碳叙事的程度、形态与效果:基于千万级媒体文本的深度学习方法
  • 批准号:
    72374069
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于数学模型的新冠肺炎疫情防控措施效果量化及措施优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高时空分辨率流感时空传播动力学模型及防控措施效果量化评估研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
南方多熟制粮区小农户化肥减量化行为及干预效果的实证研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
能量限制抑制肿瘤血管生成对低剂量化疗的增敏效果与机制研究
  • 批准号:
    82003297
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
  • 批准号:
    2333913
  • 财政年份:
    2023
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234705
  • 财政年份:
    2023
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234706
  • 财政年份:
    2023
  • 资助金额:
    $ 25.6万
  • 项目类别:
    Continuing Grant
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
  • 批准号:
    10817321
  • 财政年份:
    2023
  • 资助金额:
    $ 25.6万
  • 项目类别:
Capturing, quantifying, and understanding combinatorial effects in small molecule signaling
捕获、量化和理解小分子信号传导中的组合效应
  • 批准号:
    10684528
  • 财政年份:
    2023
  • 资助金额:
    $ 25.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了