CAREER: Privacy-aware Predictive Modeling of Dynamic Human Events
职业:动态人类事件的隐私感知预测建模
基本信息
- 批准号:1943486
- 负责人:
- 金额:$ 42.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning that leverages individuals' event data can improve the prediction accuracy of future events, but introduces high risks to each individual's privacy. Nowadays, large volumes of human event data, such as online TV-viewing records, domain name server queries, and electronic records of hospital admissions, are becoming increasingly available in a wide variety of applications including network analysis and services and healthcare analytics. Predictive modeling of those collective event sequences is beneficial for promoting nationwide economic and safety development. For example, in network traffic diagnosis, the analysis of user activities can be used to predict and control dynamic traffic demand, which improves risk response efficiency. In health informatics, the analysis of patient admission events can detect and optimize treatment for individuals at risks, which enhances public health preparedness and healthcare outcomes. However, by optimizing for the unitary goal of accuracy, machine learning algorithms trained on historic event data may amplify privacy risks. Studies have demonstrated that it is possible to infer private attributes such as demographics and locations from human activities such as online browsing histories and location check-in events. This project is to develop a trusting-based machine learning framework that better protects human privacy while minimally impacting utility for predicting dynamic events. Research and education on interdisciplinary topics of machine learning and privacy are integrated in curriculum development, student research projects, and academic seminars.The project develops a series of novel models and algorithms to analyze dynamic human events in three synergistic research thrusts. (1) Besides time-stamped event sequences, additional marker information such as event types and tags can be utilized to better capture the dependencies between events. This project investigates novel point processes, multi-view learning, and deep learning methods for analyzing dynamic human events with event marker information. (2) To improve human understanding and trust of predictive modeling, the project develops interpretable algorithms to explain how their information is used in event prediction and what potential private information can be inferred based on their inputs. (3) Balancing between privacy and utility is of mutual benefit to both individuals and service providers. This project investigates a user-specific privacy-preserving approach for event prediction and addresses utility-privacy tradeoff by formulating it as a min-max optimization problem. These three research aims are complemented by a comprehensive evaluation in a number of application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用个人事件数据的机器学习可以提高未来事件的预测准确性,但会给每个人的隐私带来高风险。如今,大量人类活动数据(例如在线电视查看记录,域名服务器查询以及医院入院的电子记录)在包括网络分析和服务和医疗保健分析在内的各种应用程序中越来越多。这些集体事件序列的预测建模有益于促进全国经济和安全发展。例如,在网络流量诊断中,对用户活动的分析可用于预测和控制动态交通需求,从而提高风险响应效率。在健康信息学中,对患者入学事件的分析可以检测和优化有风险的人的治疗方法,从而增强公共卫生的准备和医疗保健结果。但是,通过优化准确性的统一目标,对历史事件数据进行培训的机器学习算法可能会扩大隐私风险。研究表明,可以从人类活动(例如在线浏览历史记录和位置登机活动)中推断出诸如人口统计和地点之类的私人属性。该项目是开发一个基于信任的机器学习框架,该框架可以更好地保护人类的隐私,同时最小化影响动态事件的实用程序。关于机器学习和隐私的跨学科主题的研究和教育纳入了课程开发,学生研究项目和学术研讨会。该项目开发了一系列新颖的模型和算法,以分析三个协同研究推力的动态人类事件。 (1)除了时间stamp的事件序列外,还可以利用其他标记信息(例如事件类型和标签)来更好地捕获事件之间的依赖关系。该项目研究了新的点过程,多视图学习以及使用事件标记信息分析动态人类事件的深度学习方法。 (2)为了提高人类对预测建模的理解和信任,该项目开发了可解释的算法,以解释如何在事件预测中使用其信息,以及可以根据其输入来推断哪些潜在的私人信息。 (3)隐私与效用之间的平衡对个人和服务提供商都具有相互利益。该项目研究了事件预测的一种特定于用户的隐私方法,并通过将其作为最小值优化问题来解决公用事业私人关系的权衡。这三项研究的目标是在许多应用领域的全面评估中得到的补充。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Game-Theoretic Approach to Achieving Bilateral Privacy-Utility Tradeoff in Spectrum Sharing
- DOI:10.1109/globecom42002.2020.9322123
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
- 通讯作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
Bilateral Privacy-Utility Tradeoff in Spectrum Sharing Systems: A Game-Theoretic Approach
- DOI:10.1109/twc.2021.3065927
- 发表时间:2021-08
- 期刊:
- 影响因子:10.4
- 作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
- 通讯作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
Sparse Transformer Hawkes Process for Long Event Sequences
长事件序列的稀疏变压器霍克斯过程
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Zhuoqun;Sun, Mingxuan.
- 通讯作者:Sun, Mingxuan.
Multivariate Hawkes Processes for Incomplete Biased Data
不完整偏差数据的多元霍克斯过程
- DOI:10.1109/bigdata52589.2021.9672043
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhou, Zihan;Sun, Mingxuan
- 通讯作者:Sun, Mingxuan
List-wise Fairness Criterion for Point Processes
- DOI:10.1145/3394486.3403246
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Jin Shang;Mingxuan Sun;N. Lam
- 通讯作者:Jin Shang;Mingxuan Sun;N. Lam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingxuan Sun其他文献
Convergence of incremental adaptitive systems
增量自适应系统的收敛
- DOI:
- 发表时间:
2013-10 - 期刊:
- 影响因子:0
- 作者:
Mingxuan Sun - 通讯作者:
Mingxuan Sun
Stabilizing Obligatory Non-native Intermediates Along Co-transcriptional Folding Trajectories of SRP RNA Affects Cell Viability
沿着 SRP RNA 共转录折叠轨迹稳定必需的非天然中间体会影响细胞活力
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shingo Fukuda;Shannon Yan;Yusuke Komi;Mingxuan Sun;R. Gabizon;C. Bustamante - 通讯作者:
C. Bustamante
Alternative SRP RNA Folded States Accessible Co-transcriptionally can Modulate SRP Protein-Targeting Activity
- DOI:
10.1016/j.bpj.2017.11.1198 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Shingo Fukuda;Shannon Yan;Mingxuan Sun;Carlos J. Bustamante - 通讯作者:
Carlos J. Bustamante
Recent progress in organic electrodes for zinc-ion batteries
锌离子电池有机电极研究进展
- DOI:
10.1088/1674-4926/41/9/091704 - 发表时间:
2020-09 - 期刊:
- 影响因子:5.1
- 作者:
Shuaifei Xu;Mingxuan Sun;Qian Wang;Chengliang Wang - 通讯作者:
Chengliang Wang
Local low-rank Hawkes processes for modeling temporal user–item interactions
用于建模时间用户-项目交互的局部低秩霍克斯过程
- DOI:
10.1007/s10115-019-01379-6 - 发表时间:
2019 - 期刊:
- 影响因子:2.7
- 作者:
Jin Shang;Mingxuan Sun - 通讯作者:
Mingxuan Sun
Mingxuan Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingxuan Sun', 18)}}的其他基金
AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience
AI-DCL:EAGER:增强抗灾能力的公平意识信息系统
- 批准号:
1927513 - 财政年份:2019
- 资助金额:
$ 42.28万 - 项目类别:
Standard Grant
相似国自然基金
基于油气管网的多模态网络数据的在线监控及其隐私保护
- 批准号:72301108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鲁棒增强的分布式机器学习隐私保护关键技术研究
- 批准号:62302360
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向身份高可用性的人脸识别隐私保护
- 批准号:62306308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支持隐私保护的群智感知多任务数据聚合方法研究
- 批准号:62302173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 42.28万 - 项目类别:
Standard Grant
Privacy-Aware and Personalised Explanation Overlays for Recommender Systems
推荐系统的隐私意识和个性化解释叠加
- 批准号:
DP240101108 - 财政年份:2024
- 资助金额:
$ 42.28万 - 项目类别:
Discovery Projects
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 42.28万 - 项目类别:
Standard Grant
Secure, Privacy-aware, and Trusted Data Share in Smart Mobility
智能移动中的安全、隐私意识和可信数据共享
- 批准号:
EP/Y002946/1 - 财政年份:2024
- 资助金额:
$ 42.28万 - 项目类别:
Research Grant
SaTC: CORE: Medium: Situation-Aware Identification and Rectification of Regrettable Privacy Decisions
SaTC:核心:媒介:对令人遗憾的隐私决策进行情境感知识别和纠正
- 批准号:
2344951 - 财政年份:2023
- 资助金额:
$ 42.28万 - 项目类别:
Continuing Grant