AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience
AI-DCL:EAGER:增强抗灾能力的公平意识信息系统
基本信息
- 批准号:1927513
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a research project to develop a smart, fairness-aware, emergency informatics system. The system would automatically collect disaster-related data for real-time event monitoring and prediction making to better coordinate search and rescue operations. The system could, for example, automatically collect real-time victim event data from social media such as Twitter, utilize predictive algorithms to capture the spatiotemporal dynamics associated with those events, forecast future events, and direct rescue teams in response. Such systems would be useful to state and local government agencies for resource allocation and planning. For the public to support their implementation, steps are needed to ensure that they operate fairly; it is well known that decisions made by algorithms generated by machine learning techniques often exhibit bias due to a number of factors including data bias and the design of algorithm models. A rescue system based only on Twitter data, for example, may exhibit socioeconomic bias since higher disaster-related Twitter-use communities tend to be communities of higher socioeconomic status. To address fairness concerns, a prototype will be tested and verified using Twitter data as well as data collected from other sources in response to Hurricane Harvey. The approach could be applied to various types of emergency situations including earthquakes and fires. The project is interdisciplinary; the research team includes an expert in computer science and artificial intelligence, and another in geography and spatial sciences. Two graduate research assistants will also be involved in the project, which will deepen their understanding of machine learning, data analytics, and environmental social science; as a result, the project will contribute to capacity building for interdisciplinary research. Results of this project will also be incorporated into course materials and classroom activities.The central goal of this research project is to develop a fairness-aware AI system for emergency management. The project involves formulating and testing reliable principles and methods to adjust the AI algorithms for fairness, a very domain specific challenge. This is especially true in emergency management, where the system has to be able to predict rescue events in real time from large, noisy, and biased data, such as Twitter data. In light of this, the research team will develop a novel point process model for event prediction from streaming data, and it will investigate statistical learning problems when event data are noisy and incomplete. To adjust for the fairness of the prediction algorithm, the team will integrate heterogeneous social and geographical data with varying degrees of granularity and different levels to build a classic event prediction model and to examine correlations between the two approaches. Through comparing the approaches (with and without fairness adjustment) using an empirical example (Hurricane Harvey), the project will reveal the patterns of disparities, if any, and add new knowledge on community resilience and emergency management. Theory, models, and software all together form a framework that leads to scientific advances to further development in disaster resilience. This interdisciplinary research will serve to advance our understanding of machine learning, data science, and socioeconomic fairness in the management of environmental hazards. New methods will be developed to tackle incomplete and biased data and to integrate them with other components of emergency informatics systems. The approach will be applicable to many other AI system developments efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一个研究项目,以开发智能,公平感知的紧急信息系统。该系统将自动收集与灾害相关的数据进行实时事件监控和预测制作,以更好地协调搜索和救援操作。例如,该系统可以自动从Twitter等社交媒体(例如Twitter)收集实时受害者事件数据,它利用预测算法来捕获与这些事件相关的时空动态,预测未来事件以及直接救援团队响应。这样的系统对于国家和地方政府机构的资源分配和计划将很有用。为了使公众支持其实施,需要采取步骤以确保他们公平运作;众所周知,机器学习技术产生的算法做出的决策通常由于许多因素,包括数据偏见和算法模型的设计,通常会出现偏见。例如,仅基于Twitter数据的救援系统可能会表现出社会经济偏见,因为与灾难有关的较高的Twitter使用社区往往是具有较高社会经济地位的社区。为了解决公平的问题,将使用Twitter数据以及从其他来源收集的数据来测试和验证原型。该方法可以应用于各种紧急情况,包括地震和大火。该项目是跨学科的;该研究团队包括计算机科学和人工智能的专家,以及另一个地理和空间科学专家。该项目还将参与两名研究生研究助理,这将加深他们对机器学习,数据分析和环境社会科学的理解。结果,该项目将有助于跨学科研究的能力建设。该项目的结果还将纳入课程材料和课堂活动中。该研究项目的核心目标是开发一种公平意识的AI系统,用于应急管理。该项目涉及制定和测试可靠的原理和方法,以调整AI算法以确保公平性,这是一个非常特定的域名挑战。在紧急管理中尤其如此,该系统必须能够从大型,嘈杂和有偏见的数据(例如Twitter数据)实时预测救援事件。鉴于此,研究团队将开发出从流数据中的事件预测的新颖点过程模型,当事件数据嘈杂且不完整时,它将研究统计学习问题。为了调整预测算法的公平性,该团队将以不同程度的粒度和不同级别的不同程度整合异质的社会和地理数据,以构建经典的事件预测模型并检查两种方法之间的相关性。通过使用经验例子(Harvey Harvey)比较方法(有和没有公平调整),该项目将揭示差异模式(如果有),并增加有关社区韧性和紧急管理的新知识。理论,模型和软件共同构成了一个框架,从而导致科学进步,以进一步发展灾难弹性。这项跨学科的研究将有助于我们在环境危害管理中对机器学习,数据科学和社会经济公平性的理解。将开发新的方法来解决不完整和偏见的数据,并将其与紧急信息系统的其他组件集成在一起。该方法将适用于许多其他AI系统的开发工作。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Game-Theoretic Approach to Achieving Bilateral Privacy-Utility Tradeoff in Spectrum Sharing
- DOI:10.1109/globecom42002.2020.9322123
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
- 通讯作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
Human Action Image Generation with Differential Privacy
具有差分隐私的人类动作图像生成
- DOI:10.1109/icme46284.2020.9102767
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sun, Mingxuan;Wang, Qing;Liu, Zicheng
- 通讯作者:Liu, Zicheng
A Machine Learning Approach for Detecting Rescue Requests from Social Media
- DOI:10.3390/ijgi11110570
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Zheye Wang;N. Lam;Mingxuan Sun;Xiao Huang;Jin Shang;Lei Zou;Yue Wu;V. Mihunov
- 通讯作者:Zheye Wang;N. Lam;Mingxuan Sun;Xiao Huang;Jin Shang;Lei Zou;Yue Wu;V. Mihunov
Bilateral Privacy-Utility Tradeoff in Spectrum Sharing Systems: A Game-Theoretic Approach
- DOI:10.1109/twc.2021.3065927
- 发表时间:2021-08
- 期刊:
- 影响因子:10.4
- 作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
- 通讯作者:Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
Sparse Transformer Hawkes Process for Long Event Sequences
长事件序列的稀疏变压器霍克斯过程
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Zhuoqun;Sun, Mingxuan.
- 通讯作者:Sun, Mingxuan.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingxuan Sun其他文献
Convergence of incremental adaptitive systems
增量自适应系统的收敛
- DOI:
- 发表时间:
2013-10 - 期刊:
- 影响因子:0
- 作者:
Mingxuan Sun - 通讯作者:
Mingxuan Sun
Stabilizing Obligatory Non-native Intermediates Along Co-transcriptional Folding Trajectories of SRP RNA Affects Cell Viability
沿着 SRP RNA 共转录折叠轨迹稳定必需的非天然中间体会影响细胞活力
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shingo Fukuda;Shannon Yan;Yusuke Komi;Mingxuan Sun;R. Gabizon;C. Bustamante - 通讯作者:
C. Bustamante
Alternative SRP RNA Folded States Accessible Co-transcriptionally can Modulate SRP Protein-Targeting Activity
- DOI:
10.1016/j.bpj.2017.11.1198 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Shingo Fukuda;Shannon Yan;Mingxuan Sun;Carlos J. Bustamante - 通讯作者:
Carlos J. Bustamante
Recent progress in organic electrodes for zinc-ion batteries
锌离子电池有机电极研究进展
- DOI:
10.1088/1674-4926/41/9/091704 - 发表时间:
2020-09 - 期刊:
- 影响因子:5.1
- 作者:
Shuaifei Xu;Mingxuan Sun;Qian Wang;Chengliang Wang - 通讯作者:
Chengliang Wang
Local low-rank Hawkes processes for modeling temporal user–item interactions
用于建模时间用户-项目交互的局部低秩霍克斯过程
- DOI:
10.1007/s10115-019-01379-6 - 发表时间:
2019 - 期刊:
- 影响因子:2.7
- 作者:
Jin Shang;Mingxuan Sun - 通讯作者:
Mingxuan Sun
Mingxuan Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingxuan Sun', 18)}}的其他基金
CAREER: Privacy-aware Predictive Modeling of Dynamic Human Events
职业:动态人类事件的隐私感知预测建模
- 批准号:
1943486 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:32272744
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:22273104
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
RNAi介导的转S1基因大豆对SMV广谱抗性启动机制的解析
- 批准号:31801388
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
- 批准号:
2335798 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
- 批准号:
2335046 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
- 批准号:
2335700 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
2125116 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
2127754 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant