Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
基本信息
- 批准号:1940231
- 负责人:
- 金额:$ 33.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent explosion in worldwide data together with the end of Moore's Law and the near-term limits of silicon-based data storage being reached are driving an urgent need for alternative forms of computing and data storage/retrieval platforms. In particular, exabyte-scale datasets are increasingly being generated by the biological sciences and engineering disciplines including genomics, transcriptomics, proteomics, metabolomics, and high-resolution imaging, as well as disparate other scientific fields including climate science, ecology, astronomy, oceanography, sociology, and meteorology, amongst others. In this data revolution, the continuously increasing size of these datasets requires a concomitant increase in available computational power to store, process, and harness them, which is driving a need for revolutionary new, alternative substrates for, and forms of, computing and data storage. Unlike traditional data storage and computing materials such as silicon, the human brain offers a remarkable ability to sense, store, retrieve, and compute information in a manner that is unrivaled by any human-made material. In this research project, analogous modes of information sensing, data storage, retrieval, and computation will be explored in non-traditional computing molecular systems and materials. The over-arching goal of the research is to discover revolutionary new modes of data storage/retrieval, sensing, and computation that rival conventional silicon-based technology, for deployment to benefit society broadly across all domains of data science. Graduate students and postdocs across five institutions will be trained and mentored in a highly interdisciplinary manner to attain this goal and prepare the next-generation of data scientists, chemists, physicists, and engineers to harness the ongoing data revolution. The research will be disseminated to a broad community through news outlets and integration of high school student internships in participating research laboratories. Large-scale datasets from spatial-temporal calcium imaging of the mouse brain will be recorded into DNA-based, nanoparticle-based, and phononic 2D and 3D soft and hard materials. Continuous spatial-temporal data will first be transformed into discrete data for mapping onto DNA-conjugated fluorophore networks, dynamic barcoded nanoparticle networks, and phononic 2D and 3D materials. Sensing, computation, and data storage/retrieval will be demonstrated as proofs-of-principle in exploiting the chemical properties of molecular networks and materials to recover the encoded neuronal datasets and their sensing and computing processes. Success with any of these three prototypical materials would revolutionize the ability to encode arbitrarily complex, large-scale datasets into complex molecular systems, with the potential to scale across diverse data domains and materials frameworks. The investigators' Autonomous Computing Materials framework will thereby enable the encoding of arbitrary "big data" sets into diverse materials for data storage, sensing, and computing. This project maximizes opportunities for disruptive new computing and data science concepts to emerge from a multi-disciplinary, collaborative team spanning data science, neuroscience, materials science, chemistry, physics, and biological engineering. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Chemistry within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近全球数据的爆炸式增长、摩尔定律的终结以及硅基数据存储的近期极限正在推动对替代形式的计算和数据存储/检索平台的迫切需求。特别是,艾字节级数据集越来越多地由生物科学和工程学科(包括基因组学、转录组学、蛋白质组学、代谢组学和高分辨率成像)以及不同的其他科学领域(包括气候科学、生态学、天文学、海洋学、社会学、气象学等。在这场数据革命中,这些数据集的规模不断增加,需要随之增加存储、处理和利用它们的可用计算能力,这推动了对计算和数据存储的革命性的新的替代基质和形式的需求。与硅等传统数据存储和计算材料不同,人脑具有感知、存储、检索和计算信息的非凡能力,其方式是任何人造材料都无法比拟的。在该研究项目中,将在非传统计算分子系统和材料中探索信息传感、数据存储、检索和计算的类似模式。该研究的首要目标是发现与传统硅基技术相媲美的革命性的数据存储/检索、传感和计算新模式,并进行部署,以在数据科学的所有领域广泛造福社会。五个机构的研究生和博士后将以高度跨学科的方式接受培训和指导,以实现这一目标,并为下一代数据科学家、化学家、物理学家和工程师做好准备,以利用正在进行的数据革命。该研究将通过新闻媒体和高中生在参与研究实验室的实习活动向更广泛的社区传播。小鼠大脑时空钙成像的大规模数据集将被记录到基于 DNA、基于纳米颗粒的声子 2D 和 3D 软硬材料中。连续的时空数据将首先转换为离散数据,用于映射到 DNA 共轭荧光团网络、动态条形码纳米颗粒网络以及声子 2D 和 3D 材料上。传感、计算和数据存储/检索将作为利用分子网络和材料的化学性质来恢复编码的神经元数据集及其传感和计算过程的原理证明。这三种原型材料中任何一种的成功都将彻底改变将任意复杂的大规模数据集编码为复杂分子系统的能力,并具有跨不同数据域和材料框架扩展的潜力。研究人员的自主计算材料框架将能够将任意“大数据”集编码为用于数据存储、传感和计算的不同材料。该项目最大限度地增加了颠覆性新计算和数据科学概念的机会,使涵盖数据科学、神经科学、材料科学、化学、物理和生物工程的多学科协作团队涌现。该项目是美国国家科学基金会利用数据革命 (HDR) 大创意活动的一部分,由 HDR 和 NSF 数学和物理科学理事会化学部共同支持。该奖项反映了 NSF 的法定使命,并得到了通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bathe其他文献
Mark Bathe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bathe', 18)}}的其他基金
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
AF Medium: DNA-based Data Storage and Computing Materials
AF Medium:基于DNA的数据存储和计算材料
- 批准号:
1956054 - 财政年份:2020
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials
DMREF:下一代纳米级 DNA 材料的计算设计
- 批准号:
1729397 - 财政年份:2018
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
- 批准号:
1839155 - 财政年份:2018
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Inferring the Physics of mRNA Trafficking in Neuronal Systems
推断神经系统中 mRNA 运输的物理原理
- 批准号:
1707999 - 财政年份:2017
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
- 批准号:
1564025 - 财政年份:2016
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
- 批准号:
1547999 - 财政年份:2015
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
DMREF: Computational Design Principles for Functional DNA-Based Materials
DMREF:功能性 DNA 材料的计算设计原则
- 批准号:
1334109 - 财政年份:2014
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Inferring the Physics of Living Systems from Dynamic Light Microscopy Data
从动态光学显微镜数据推断生命系统的物理原理
- 批准号:
1305537 - 财政年份:2014
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
相似国自然基金
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
无人船自主航行系统软硬件耦合失效机理及可靠性测试模型研究
- 批准号:52301401
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向自主认知与群智协作的多智能体制造系统关键技术研究
- 批准号:52305539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CXCL1上调FAK/PI3K/Akt通路促进颗粒脂肪自主装工程化脂肪瓣快速血管化的机制研究
- 批准号:82372543
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
烟雾环境下基于全向扫描毫米波雷达的无人车辆自主导航算法研究
- 批准号:52372415
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
- 批准号:
2208489 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant