AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies

AF:中:协作研究:结构化核酸组装体的自上而下的算法设计

基本信息

  • 批准号:
    1564025
  • 负责人:
  • 金额:
    $ 63.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

The past decade has witnessed dramatic growth in ability to "print" complex nanometer-scale structures and patterns using self-assembling nucleic acids. These structures can be used as templates to synthesize inorganic materials on the 1-100 nanometer-scale, or employed directly in applications such as DNA-based memory storage, therapeutic delivery, single-molecule structure-determination, and nanoscale excitonic materials. While various computational strategies are available to forward design these complex 3D structures manually from underlying DNA or RNA sequence and topology, the inverse problem of autonomously generating linear nucleic acid sequences from target geometry alone remains an unsolved computational challenge. In this project, fully automatic, top-down computer-aided design (CAD) algorithms are explored to generate topological sequence designs for broad classes of programmed DNA and RNA assemblies in an autonomous manner using target geometry alone. These assemblies can be "printed" via self-assembly in vitro or in vivo to form target nanoscale geometries using either synthetic or transcribed nucleic acids. The approach will offer a broadly accessible, high-level programming language to realize sequence-based programming of arbitrary 1D/2D/3D nanoscale structured materials based on nucleic acids with diverse applications in basic science and nanotechnology.The proposed computational algorithms will be distributed freely online as open source software as well as integrated into a variety of software packages to broadly enable the top-down design of DNA and RNA assemblies. These algorithms and software will provide the broader scientific and industrial communities with easy-to-use, high-level design strategies that will accelerate the broad participation of groups in the use of nucleic acid nanotechnology for diverse applications in biomolecular and materials science and technology. The tools will open up opportunities for high school students and undergraduates to gain hands-on experience in nucleic acid nanostructure design. Curriculum developments at ASU and MIT will employ the use of this sequence design software for participation by undergraduate and graduate students in its use and application to basic questions in computer science and nanotechnology research.Foundational aspects of the design of nanoscale structured materials using DNA and RNA will be explored. Algorithmic approaches to rendering diverse CAD-based geometric primitives using DNA and RNA will be investigated, including wireframe lattices in 2D and 3D, single-layer surfaces that may contain arbitrary curvatures, as well as 3D solid objects. Meshing algorithms will be used to discretize geometric objects in 1D, 2D, and 3D, and topological routing and sequence design will be applied to position nucleic acid strands within CAD objects. Continuous and discontinuous single stranded nucleic acids will be routed through duplexes using anti-parallel and parallel crossover configurations to exploit distinct modes of programmed self-assembly. Sequence design and routing will be validated experimentally to explore principles for obtaining optimal folding, self-assembly, and positioning of specific base pairs in 3D space. Self-assembly of nanostructures from RNA will additionally be explored, utilizing staple-free designs from single long continuous scaffold strands. Close interaction between experiment and computation will help to distill fundamental yet practical approaches to programming structured nucleic acid assemblies.
过去十年见证了使用自组装核酸“打印”复杂纳米级结构和图案的能力的显着增长。这些结构可用作合成 1-100 纳米级无机材料的模板,或直接用于基于 DNA 的记忆存储、治疗递送、单分子结构测定和纳米级激子材料等应用。虽然可以使用各种计算策略从底层 DNA 或 RNA 序列和拓扑结构手动设计这些复杂的 3D 结构,但仅从目标几何形状自主生成线性核酸序列的逆问题仍然是一个未解决的计算挑战。在该项目中,探索了全自动、自上而下的计算机辅助设计 (CAD) 算法,仅使用目标几何形状以自主方式为广泛的编程 DNA 和 RNA 组装体生成拓扑序列设计。这些组件可以通过体外或体内的自组装“打印”,以使用合成或转录的核酸形成目标纳米级几何形状。该方法将提供一种可广泛访问的高级编程语言,以实现基于核酸的任意 1D/2D/3D 纳米级结构材料的基于序列的编程,在基础科学和纳米技术中具有多种应用。所提出的计算算法将自由分发作为开源软件在线提供,并集成到各种软件包中,以广泛实现 DNA 和 RNA 组装的自上而下设计。这些算法和软件将为更广泛的科学和工业界提供易于使用的高水平设计策略,从而加速各团体广泛参与核酸纳米技术在生物分子和材料科学技术领域的各种应用。这些工具将为高中生和本科生提供获得核酸纳米结构设计实践经验的机会。亚利桑那州立大学和麻省理工学院的课程开发将采用该序列设计软件,让本科生和研究生参与其在计算机科学和纳米技术研究中基本问题的使用和应用。使用 DNA 和 RNA 设计纳米级结构材料的基础方面将被探索。将研究使用 DNA 和 RNA 渲染各种基于 CAD 的几何图元的算法方法,包括 2D 和 3D 线框晶格、可能包含任意曲率的单层表面以及 3D 实体对象。网格划分算法将用于在 1D、2D 和 3D 中离散化几何对象,拓扑路由和序列设计将用于在 CAD 对象内定位核酸链。连续和不连续的单链核酸将使用反平行和平行交叉配置通过双链体,以利用不同的编程自组装模式。序列设计和路由将通过实验进行验证,以探索在 3D 空间中获得最佳折叠、自组装和特定碱基对定位的原理。此外,还将利用单个长连续支架链的无钉设计,探索 RNA 自组装纳米结构。实验和计算之间的密切相互作用将有助于提炼出编程结构化核酸组装体的基本而实用的方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated sequence design of 2D wireframe DNA origami with honeycomb edges
  • DOI:
    10.1038/s41467-019-13457-y
  • 发表时间:
    2019-11-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jun, Hyungmin;Wang, Xiao;Bathe, Mark
  • 通讯作者:
    Bathe, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Bathe其他文献

Mark Bathe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Bathe', 18)}}的其他基金

EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Standard Grant
AF Medium: DNA-based Data Storage and Computing Materials
AF Medium:基于DNA的数据存储和计算材料
  • 批准号:
    1956054
  • 财政年份:
    2020
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
  • 批准号:
    1940231
  • 财政年份:
    2019
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials
DMREF:下一代纳米级 DNA 材料的计算设计
  • 批准号:
    1729397
  • 财政年份:
    2018
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
  • 批准号:
    1839155
  • 财政年份:
    2018
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Standard Grant
Inferring the Physics of mRNA Trafficking in Neuronal Systems
推断神经系统中 mRNA 运输的物理原理
  • 批准号:
    1707999
  • 财政年份:
    2017
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
  • 批准号:
    1547999
  • 财政年份:
    2015
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Standard Grant
DMREF: Computational Design Principles for Functional DNA-Based Materials
DMREF:功能性 DNA 材料的计算设计原则
  • 批准号:
    1334109
  • 财政年份:
    2014
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Standard Grant
Inferring the Physics of Living Systems from Dynamic Light Microscopy Data
从动态光学显微镜数据推断生命系统的物理原理
  • 批准号:
    1305537
  • 财政年份:
    2014
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 63.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了