GOALI: Ternary Metal Diboride Coatings with Enhanced Oxidation Resistance and Durability - Understanding Phase Formation from a Metastable Starting State
GOALI:具有增强的抗氧化性和耐久性的三元金属二硼化物涂层 - 了解亚稳态起始状态的相形成
基本信息
- 批准号:1914769
- 负责人:
- 金额:$ 64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: This project addresses the need to expand the performance of materials that resist wear at elevated temperatures in a wide range of applications from microelectronics to protective coatings for manufacturing. Such coatings are critical for ensuring component quality and reliability by reducing manufacturing flaws, reducing in-service damage and extending the lifetime of components in the field and in manufacturing processes - all of which will largely eliminate waste, inefficient operations and resource intensive redundancies. Improved coatings may also expand the design space, allowing engineers to make choices that are more sustainable or could improve performance but are otherwise impossible with existing technologies. Transition metal diborides have exceptional wear properties and are quite tolerant of high temperatures; however, the presence of oxygen in these service environments diminishes those properties. This research is coupling processing science with state of the art characterization tools to develop new coating chemistries in the diboride family that evolve to protect themselves in oxidizing environments. Moreover, the processing route uses chemically safe precursors and operates at lower temperatures, making it a sustainable alternative to many existing coating technologies. By engaging an industrial partner, UES Inc., though the GOALI program, this research is focused on industrially identified gaps in understanding and technology. Graduate student researchers are also benefiting from this close partnership, gaining invaluable training and professional skills by working directly with UES researchers. These graduate students will be well positioned to join companies across a wide spectrum of industries dependent on these protective coatings (e.g., automotive, microelectronics, aerospace, power generation, tooling, etc.) where they are very much in demand. Teaching, training and participation of underrepresented groups is being fostered through targeted recruitment of graduate students from the University of Illinois Support of Under-Represented Groups in Engineering (SURGE) program and undergraduate researchers from the Illinois Scholars Undergraduate Research (ISUR) program.TECHNICAL DETAILS: The overarching objective of this study is to establish the scientific underpinnings of a new sustainable kinetic route towards durable, oxidation resistant refractory diboride thin films of HfAlxBy and HfCrxBy. The initial metastable state is established through low temperature chemical vapor deposition and the use of chemically safe (halogen free) precursors. The PIs are committed to sustainable synthesis routes, specifically the co-PI is a co-founder and lead instructor in the 'Energy and Sustainability Engineering' graduate certificate and MEng degree programs at UI (http://EaSE.Illinois.edu). Once fabricated, film properties are evaluated in both as-deposited and annealed conditions using quantitative techniques, including transmission electron microscopy, electron energy loss spectroscopy, and energy dispersive X-ray spectroscopy. The results for film growth, microstructure and composition are then analyzed in terms of kinetic models for the component steps in the synthesis process. Additionally, in exploratory work, incorporation of Cr is examined using the Cr(B3H8)2 precursor developed by a collaborator. This precursor, which contains no heteroatoms other than hydrogen, has previously been demonstrated by the co-PI to deposit high quality CrB2 films, hence, it is expected to work well in combination with Hf(BH4)4. Film growth, including the pursuit and validation of chemically safe synthesis routes, analysis and testing actively involve the GOALI partner, UES Inc., facilitated by regular communication and extended visits of personnel between sites. Successful protocols are then transferred to industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目解决了在从微电子到制造保护涂层的广泛应用中扩展耐高温磨损材料性能的需求。此类涂层对于通过减少制造缺陷、减少使用中损坏以及延长现场和制造过程中部件的使用寿命来确保部件质量和可靠性至关重要,所有这些都将在很大程度上消除浪费、低效运营和资源密集型冗余。改进的涂层还可以扩大设计空间,使工程师能够做出更可持续或可以提高性能的选择,但现有技术是不可能的。过渡金属二硼化物具有优异的耐磨性能,并且非常耐高温;然而,这些使用环境中氧气的存在会削弱这些特性。这项研究将加工科学与最先进的表征工具结合起来,开发二硼化物家族中的新涂层化学物质,这些化学物质能够在氧化环境中自我保护。此外,该加工路线使用化学安全的前体并在较低温度下运行,使其成为许多现有涂层技术的可持续替代品。 通过与工业合作伙伴 UES Inc. 合作,通过 GOALI 计划,这项研究的重点是工业界在理解和技术方面发现的差距。 研究生研究人员也受益于这种密切的合作关系,通过直接与 UES 研究人员合作获得宝贵的培训和专业技能。这些研究生将有能力加入依赖这些保护涂层的各行各业(例如汽车、微电子、航空航天、发电、模具等)的公司,这些行业对他们的需求非常大。通过有针对性地招募伊利诺伊大学工程领域代表性不足群体支持 (SURGE) 计划的研究生和伊利诺伊州学者本科生研究 (ISUR) 计划的本科生研究人员,促进代表性不足群体的教学、培训和参与。 技术细节:这项研究的首要目标是为 HfAlxBy 和 HfAlxBy 的耐用、抗氧化难熔二硼化物薄膜建立新的可持续动力学路线的科学基础HfCrxBy。初始亚稳态是通过低温化学气相沉积和使用化学安全(无卤素)前体建立的。 PI 致力于可持续合成路线,特别是联合 PI 是伊利诺伊大学 (http://EaSE.Illinois.edu) 的“能源与可持续工程”研究生证书和硕士学位课程的联合创始人和首席讲师。 制造完成后,使用定量技术(包括透射电子显微镜、电子能量损失光谱和能量色散 X 射线光谱)在沉积状态和退火条件下评估薄膜特性。然后根据合成过程中各组成步骤的动力学模型分析薄膜生长、微观结构和成分的结果。此外,在探索性工作中,使用合作者开发的 Cr(B3H8)2 前体检查了 Cr 的掺入。这种前体不含除氢以外的杂原子,之前已通过 co-PI 证明可以沉积高质量的 CrB2 薄膜,因此预计它与 Hf(BH4)4 结合使用效果良好。 GOALI 合作伙伴 UES Inc. 积极参与薄膜生长,包括寻求和验证化学安全的合成路线、分析和测试,并通过定期沟通和人员在工厂之间的长期访问来促进。成功的协议随后将转移到行业。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coalescence of ultrathin films by atomic layer deposition or chemical vapor deposition: Models of the minimum thickness based on nucleation and growth rates
通过原子层沉积或化学气相沉积实现超薄膜的聚结:基于成核和生长速率的最小厚度模型
- DOI:10.1116/6.0001562
- 发表时间:2022-03
- 期刊:
- 影响因子:2.9
- 作者:LaFollette, Diana K.;Canova, Kinsey L.;Zhang, Zhejun V.;Abelson, John R.
- 通讯作者:Abelson, John R.
Superconformal chemical vapor deposition using plasma-generated atomic species as a consumable growth inhibitor
使用等离子体产生的原子物种作为消耗性生长抑制剂的超共形化学气相沉积
- DOI:10.1116/6.0001018
- 发表时间:2021-07
- 期刊:
- 影响因子:2.9
- 作者:Yang, Yu;Canova, Kinsey L.;Jayaraman, Sreenivas;Kim, Do;Girolami, Gregory S.;Abelson, John R.
- 通讯作者:Abelson, John R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Krogstad其他文献
Jessica Krogstad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Krogstad', 18)}}的其他基金
Towards Nanomanufacturing of Materials with Coherent Interfaces
迈向具有相干界面的材料的纳米制造
- 批准号:
1761189 - 财政年份:2018
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
CAREER: Enhanced Ferroelastic Toughening in Electroceramic Composites through Microstructural Coupling
职业:通过微结构耦合增强电陶瓷复合材料的铁弹性增韧
- 批准号:
1654182 - 财政年份:2017
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
相似国自然基金
光-金属-酶 “三元”协同催化远程C-H去消旋化反应及其机理研究
- 批准号:22301129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗光腐蚀过渡金属/金属硫族化合物/LDHs三元异质结纳米材料构筑及其可见光协同催化有机合成应用研究
- 批准号:22362024
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
催化剂簇强化高镍三元/锂金属固态电池高电压稳定性的双界面协同调控机制
- 批准号:22379016
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超稳定、高截留、抗污染有机膦酸-金属-MXene三元复合纳滤膜的构筑及其高效去除新兴微污染物机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-黑磷基三元异质结纳米材料的空间分辨型光电化学传感平台的构建及其应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
アミド選択的な還元を鍵とする金属捕捉環状ペプチド天然物の全合成と三次元構造の解明
以酰胺选择性还原为关键的捕获金属环肽天然产物的全合成及三维结构解析
- 批准号:
24K09724 - 财政年份:2024
- 资助金额:
$ 64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
次世代太陽光エネルギー変換材料を目指した金属ナノ粒子の三次元高秩序配列体の開発
开发用于下一代太阳能转换材料的三维高度有序金属纳米粒子阵列
- 批准号:
24K08058 - 财政年份:2024
- 资助金额:
$ 64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
三次元周期構造制御した高エントロピー合金の創製とその損傷メカニズムの解明
三维周期结构控制高熵合金的制备及其损伤机制的阐明
- 批准号:
22KJ1505 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Layered molecular two-dimensional materials based on metal-organic polyhedra
基于金属有机多面体的层状分子二维材料
- 批准号:
22KF0219 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ナノスケールで三次元的に制御した高性能複合光触媒の開発と水素生成への応用
纳米级三维可控高性能复合光催化剂的研制及其在制氢中的应用
- 批准号:
22KJ0733 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Grant-in-Aid for JSPS Fellows