The study of arithmetic and analytic property of automorphic forms and zeta function associated with them and numerical analysis

自守形式及其相关zeta函数的算术和解析性质研究及数值分析

基本信息

项目摘要

(1) Under assumptions of the multiplicity one theorem of Hecke operators, H.Kojima deduced an explicit relation between the square of Fourier coefficients a(4n) at a. fundamental discriminant 4n of modular forms f(x)=SIGMAepsilon(-1)^kn=0,1(4), n>0 a(n)e[nzl belonging to the Kohnen's space of half integral weight (2k+1)/ and of arbitrary odd level N with primitive character x and the critical value of the zeta function of the modular form F which is the image of f under the Shimura correspondence PSI.Our methods of the proof are the same as those of Shimura. We treated the excluding case in the Shimura's paper concerning Fourier coefficients of Hilbert modular forms of half integral weight and our results gave a generalization and development of Shimura' results. Moreover, using this method, we derived an analogous results in the case of Maass wave forms of half integral weight belonging to Kohnen's spaces.(2) Oshikiri proves that if the codimension of a bundle-like foliation F of a Riemannian manifold (M, g) with positive sectional curvature is even, then F hasa compact leaf, and that if the codimension of F is odd, then F has a leaf whose closure is a codimension (q- 1) closed submanifold of M.(3) As ingredients for the order problem of the Riemann zeta-function, Miyai investigated alternative explicit formulas for various arithmetic exponential sums relating to the problem. On constructing the cosinus form for the Atkinson phase function f(T, n), he gave an explicit formula for |zeta(1/+iT)|^2.(4) Tayoshi considered the equation of the vibration of a elastic string in 3-dimensional space. Supposing Hooke's law and certain Lagrangian density, on the basis of analytic mechanics, he derived a system of nonlinear partial differential equations, which, in our expectation, describes the vibration of the string. Moreover, he obtained some stationary solutions.
(1)在Hecke运算符的多个假设的假设下,H.Kojima推断了傅立叶系数A(4n)的平方之间的明确关系。模块化形式F(x)= Sigmaepsilon(-1)^KN = 0,1(4),N> 0 a(n)E [NZL属于Kohnen的一半积分重量(2K+1)/和具有原始特征X的关键形式的关键形式的Zimular Zim of Zim of Zim forts f s sh Zimular for的图像ZIM f的基本效果X的基本差异X = 0,1(4),在原始形式x和MOMIDAL SH的关键形式下是ZIM的Zim forts f zimultar f f的基本X和ZIM的关键值,这是ZETA的关键值,这是Zim of Zim of Zim of Zim for的图像, PSI。我们的证明方法与Shimura的方法相同。我们处理了Shimura论文中有关Hilbert模块化形式的傅立叶系数的一半积分重量的傅立叶系数,我们的结果给出了Shimura结果的概括和发展。此外,使用这种方法,我们得出了类似的结果,在属于Kohnen空间的Maass Wave的一半积分重量的情况下。(2)Oshikiri证明,如果捆绑弯曲(M,G)的类似束的叶状(m,g)的束形叶子的叶状f的编成相吻合,则具有正面曲率,然后是fl hasa codimen off assa fof fof fof fof fof fof fof hasa fof flef fof fof hasa flef fof hasa fof fof fof hasa fof fof hasa fof fof fof hasa fof fof hasa fof fof fof。 MI(3)作为Riemann Zeta功能的顺序问题的成分的封闭式(Q-1),Miyai研究了与该问题有关的各种算术指数总和。在为阿特金森相函数f(t,n)构造cosinus形式时,他给出了| zeta(1/+it)|^2的明确公式。他假设Hooke定律和某些拉格朗日密度在分析力学的基础上,他得出了一个非线性偏微分方程的系统,在我们的期望下,该方程描述了字符串的振动。此外,他获得了一些固定的解决方案。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Kojima: "The formula for the dimension of the spaces of vector valued holomorphic automorphic forms on the unitary group su(1, p)" Kyushu J.of Math. 51. 57-76 (1997)
H.Kojima:“酉群 su(1, p) 上向量值全纯自守形式的空间维数公式”九州数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kojima: "On explicit construction of Hilbert-Siegel modular forms of degree two" Acta Arith.LXXXI.3. 265-274 (1997)
H.Kojima:“关于二级希尔伯特-西格尔模形式的显式构造”Acta Arith.LXXXI.3。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G.Oshikiri: "Co dimension-one-foliations and oriented graphs" Tohoku Math,J.(発表予定). (1999)
G. Oshikiri:“Co 维一叶和有向图”Tohoku Math, J.(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Kojima: "On explicit construction of Hilbert-Siegel modular forms of degree two" Acta Arithmetica. LXXX1.3. 265-274 (1997)
Hisashi Kojima:“关于二级希尔伯特-西格尔模形式的显式构造”《算术学报》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Kojima: "Fourier coefficients of modular forms of half integral weight,periods of modular forms and special values of ζ functions" Hiroshima Math.J.27. 361-371 (1997)
小岛恒:“半积分权的模形式的傅里叶系数、模形式的周期和 z 函数的特殊值”Hiroshima Math.J.27(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOJIMA Hisashi其他文献

KOJIMA Hisashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOJIMA Hisashi', 18)}}的其他基金

An arithmetic study of modular forms of half integral weight and Siegel modular forms
半积分权模形式和Siegel模形式的算术研究
  • 批准号:
    18540013
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and Siegel modular forms
半积分权模形式与Siegel模形式傅立叶系数的算术研究
  • 批准号:
    16540003
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and the special values of zeta functions
半积分权模形式傅里叶系数及zeta函数特殊值的算术研究
  • 批准号:
    14540002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of automorphic forms and modular forms and zeta functions
自守形式和模形式的傅里叶系数以及zeta函数的算术研究
  • 批准号:
    11640004
  • 财政年份:
    1999
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An electrophysiological study on the mechanism of seizure generation in rat brain slices : the effect of adenosine on epileptiformactivities.
大鼠脑切片癫痫发作机制的电生理学研究:腺苷对癫痫样活动的影响。
  • 批准号:
    04670847
  • 财政年份:
    1992
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Modular forms of half-integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
  • 批准号:
    23KJ1824
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302284
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了