Towards Nanomanufacturing of Materials with Coherent Interfaces

迈向具有相干界面的材料的纳米制造

基本信息

项目摘要

Rapid innovations in today's manufacturing technologies and the need for superior performance are pushing the boundaries for advancing next generation materials. Due to extreme operational demands, current service components warrant a favorable combination of high strength, ductility and cracking resistance. Nanostructured materials have the potential to meet these technological demands if they can be designed to possess these properties and manufactured at large enough scale. The design of new materials, however, has traditionally been a highly iterative and costly process, and thus the development of computational models can greatly reduce the cost of development and deployment of advanced materials. This award supports research that will advance knowledge of nanoscale processing routes while simultaneously developing more predictive modeling methods.? The integrated processing and modeling approach will expedite materials design while eliminating excessive processing and characterization trials.? Moreover, this research will result in high fidelity tools for material lifetime prediction for critical applications in civil, aerospace, naval structures, nuclear plants and ground vehicles, with the potential to improve safety and eliminate premature retirement of materials. ?This research draws upon collaborative approaches in Materials Science and Mechanical Engineering, and integrates computational and experimental approaches, ensuring that students involved in this research will be fluent in both.The intellectual challenge to be addressed by this research involves harnessing processing methods to generate microstructures with tightly controlled coherent interface populations, thus enabling a systematic understanding of dislocation/interface reactions under complex cyclic loading conditions. This research will enable control of physical vapor deposition routes to deposit heavily twinned microstructures with narrow spatial distributions at the nanoscale, which will allow expansion of the material systems that can be induced to possess the promising nanotwin microstructure, including materials with higher intrinsic stacking fault energies.? By probing highly controlled nanotwinned microstructures, the research team will establish the attributes for a nanotwinned material to achieve higher fatigue resistance while also limiting variability in fatigue lives.? Integration of processing, microstructural characterization and mechanical testing into a multiscale modeling framework will ultimately allow for convergence to optimum microstructures and compositions in a timely fashion, potentially eliminating the need to perform exhaustive testing for each new processing parameter or composition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今制造技术的快速创新和对卓越性能的需求正在突破下一代材料的界限。由于极端的操作要求,当前的服务组件保证了高强度、延展性和抗裂性的良好组合。如果纳米结构材料能够被设计为具有这些特性并能够大规模制造,那么它们就有可能满足这些技术需求。然而,新材料的设计传统上是一个高度迭代且成本高昂的过程,因此计算模型的开发可以大大降低先进材料的开发和部署成本。该奖项支持研究,这些研究将增进纳米级加工路线的知识,同时开发更具预测性的建模方法。集成的处理和建模方法将加快材料设计,同时消除过多的处理和表征试验。此外,这项研究还将为民用、航空航天、海军结构、核电站和地面车辆等关键应用的材料寿命预测提供高保真工具,并有可能提高安全性并消除材料的过早报废。这项研究借鉴了材料科学和机械工程的协作方法,并整合了计算和实验方法,确保参与这项研究的学生能够熟练掌握这两种方法。这项研究要解决的智力挑战包括利用加工方法来生成微观结构具有严格控制的相干界面群,从而能够系统地了解复杂循环加载条件下的位错/界面反应。这项研究将能够控制物理气相沉积路线,以在纳米尺度上沉积具有狭窄空间分布的重孪晶微结构,这将允许材料系统的扩展,从而可以诱导拥有有前途的纳米孪晶微结构,包括具有更高本征堆垛层错能的材料.?通过探测高度控制的纳米孪晶微观结构,研究小组将确定纳米孪晶材料的属性,以实现更高的抗疲劳性,同时限制疲劳寿命的变化。将加工、微观结构表征和机械测试集成到多尺度建模框架中,最终将能够及时收敛到最佳微观结构和成分,从而可能消除对每个新加工参数或成分进行详尽测试的需要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolving dislocation cores at Twin Boundaries: Theory of CRSS Elevation
双边界处不断演化的位错核心:CRSS 高程理论
  • DOI:
    10.1016/j.ijplas.2021.103141
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    O. Celebi;A. Mohammed;J. Krogstad;H. Sehitoglu
  • 通讯作者:
    H. Sehitoglu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Krogstad其他文献

Jessica Krogstad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessica Krogstad', 18)}}的其他基金

GOALI: Ternary Metal Diboride Coatings with Enhanced Oxidation Resistance and Durability - Understanding Phase Formation from a Metastable Starting State
GOALI:具有增强的抗氧化性和耐久性的三元金属二硼化物涂层 - 了解亚稳态起始状态的相形成
  • 批准号:
    1914769
  • 财政年份:
    2019
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Continuing Grant
CAREER: Enhanced Ferroelastic Toughening in Electroceramic Composites through Microstructural Coupling
职业:通过微结构耦合增强电陶瓷复合材料的铁弹性增韧
  • 批准号:
    1654182
  • 财政年份:
    2017
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant

相似国自然基金

面向3D光场显示的衍射型光场调制器研究
  • 批准号:
    61905077
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
悬切结构的仿生制备及液体自发定向输运机制研究
  • 批准号:
    61805156
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
跨尺度纳米操作机驱动机理及自动化微纳操作方法的研究
  • 批准号:
    61774107
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
基于离焦扫描穆勒显微镜的纳米结构缺陷检测理论与方法研究
  • 批准号:
    51775217
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
多自由度高速大范围纳米定位控制技术及其在基于探针高频振动的硬材料纳米加工中的应用
  • 批准号:
    61673091
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Nanomanufacturing of Emerging 2D Materials and Devices
REU 网站:新兴 2D 材料和器件的纳米制造
  • 批准号:
    2244201
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy
碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗
  • 批准号:
    10601451
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2021
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了