CPS: Medium: Data-driven Causality Mapping, System Identification and Dynamics Characterization for Future Power Grid

CPS:中:未来电网的数据驱动因果关系图、系统识别和动态表征

基本信息

  • 批准号:
    1932458
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The overarching goal of the proposed research is to derive critical information and characterization of large scale generic nonlinear dynamical systems using limited observables. In the present state-of-the-art in data-driven dynamical system analysis, all the underlying state measurements and the time evolution of these states are required. Access to all of the dynamical states measurements in real-world is impossible or expensive. The objective of the proposal is to develop data-driven tools for dynamic system identification, classification and root-cause analysis of dynamic events, and prediction of system evolution. The research team will specifically conduct research on using available measurements to perform near real-time applications for various dynamic events that occur in electric power systems. The data analytics proposed are applicable to general non-linear dynamic systems and can be easily applied to other cyberphysical systems (CPS). More broadly, there is a large effort in the CPS and control community to model real world systems that we all interact with on a daily basis (such as transportation systems, communication networks, world wide web, etc.) as dynamical systems and thus, the theory and techniques developed through this project will enable online monitoring of these critical systems, allowing operators to quickly analyze these systems for any unstable/anomalous behavior from minimal data streams. The project will promote various educational and outreach activities including developing new courses, short courses, activities in schools, and scholarships for women and underrepresented minority students. Overview: The goal of this proposal is to develop operator theoretic data analytics techniques for dynamic systems with limited measurements to identify the underlying non-linear dynamical system and characterize their behavior such as causal interactions between constituent components, stability monitoring, identifying targets for control. The proposed research is in the domain of "Technology for cyber-physical systems". The novelty of the proposed methods is that they do not require the dynamic states but can utilize system outputs, making it applicable to real-world dynamical systems. Power systems are rapidly evolving with increased deployment of sensors like the phasor measurement units (PMUs) that have high accuracy and high sampling frequencies (up to 120 Hz). These measurements will be used to develop an equivalent linear representation in a higher dimensional function space that can be used for online identification and characterization of nonlinear dynamics of the power grid. Further, machine learning techniques will be formulated to learn effective dictionary functions for the scalable deployment of proposed method. Using the proposed system identification method, the project will develop the theory and methodology for data-driven Information Transfer based causality mapping for detection and localization of system stress and dynamic coupling between the systems components. Specific applications for power grids will include stability monitoring, trajectory prediction and identification of targets for controlling adverse dynamic behavior. The methods are evaluated by an integrated power-cyber co-simulator (IPCC) that integrates power transmission, distribution and communication systems to generate synthetic sensor data for large systems under various dynamic scenarios. The IPCC will be able to model intermediate communication networks that cause measurement inconsistencies like delays, packet drop, etc. The Iowa State University's hardware in the loop cyber-physical testbed will be used to validate and evaluate some of the online applications like stability monitoring and trajectory prediction for large power grid topologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议研究的总体目标是使用有限的可观测值导出大规模通用非线性动力系统的关键信息和表征。在目前最先进的数据驱动动力系统分析中,需要所有基础状态测量和这些状态的时间演化。获得现实世界中的所有动态测量结果是不可能的或昂贵的。该提案的目标是开发数据驱动的工具,用于动态系统识别、动态事件的分类和根本原因分析以及系统演化的预测。研究团队将专门开展研究,利用现有的测量结果对电力系统中发生的各种动态事件进行近实时的应用。所提出的数据分析适用于一般非线性动态系统,并且可以轻松应用于其他网络物理系统(CPS)。更广泛地说,CPS 和控制界做出了巨大的努力,将我们每天与之交互的现实世界系统(例如交通系统、通信网络、万维网等)建模为动态系统,因此,通过该项目开发的理论和技术将能够在线监控这些关键系统,使操作员能够从最少的数据流中快速分析这些系统是否存在任何不稳定/异常行为。该项目将促进各种教育和外展活动,包括开发新课程、短期课程、学校活动以及为女性和代表性不足的少数族裔学生提供奖学金。 概述:该提案的目标是为测量有限的动态系统开发算子理论数据分析技术,以识别潜在的非线性动态系统并表征其行为,例如组成组件之间的因果相互作用、稳定性监测、识别控制目标。拟议的研究属于“网络物理系统技术”领域。所提出方法的新颖之处在于它们不需要动态,但可以利用系统输出,使其适用于现实世界的动态系统。随着具有高精度和高采样频率(高达 120 Hz)的相量测量单元 (PMU) 等传感器的部署增加,电力系统正在迅速发展。 这些测量将用于在高维函数空间中开发等效线性表示,可用于电网非线性动态的在线识别和表征。此外,将制定机器学习技术来学习有效的字典功能,以实现所提出方法的可扩展部署。使用所提出的系统识别方法,该项目将开发基于数据驱动信息传输的因果关系映射的理论和方法,用于系统应力和系统组件之间的动态耦合的检测和定位。电网的具体应用将包括稳定性监测、轨迹预测和控制不利动态行为的目标识别。这些方法通过集成电力网络联合模拟器(IPCC)进行评估,该模拟器集成了输电、配电和通信系统,为各种动态场景下的大型系统生成合成传感器数据。 IPCC 将能够对导致测量不一致(例如延迟、丢包等)的中间通信网络进行建模。爱荷华州立大学的硬件在环网络物理测试平台将用于验证和评估一些在线应用程序,例如稳定性监控和该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkataramana Ajjarapu其他文献

Identification and location of long-term voltage instability based on branch equivalent
基于支路等效的电压长期失稳识别与定位

Venkataramana Ajjarapu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venkataramana Ajjarapu', 18)}}的其他基金

Enabling a Flexible, Non-disruptive Demand Control to Improve Grid Security & Performance
实现灵活、无中断的需求控制以提高电网安全
  • 批准号:
    1810079
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: PSERC Collaborative Proposal for a Phase III Industry University Cooperative Research Center Program
合作研究:PSERC关于三期产学合作研究中心项目的合作提案
  • 批准号:
    0968841
  • 财政年份:
    2010
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
An Innovative Optimal Integration of Wind and Solar Resources for Reliable and Sustainable Power Generation
风能和太阳能资源的创新优化整合,实现可靠和可持续发电
  • 批准号:
    0829025
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
A Novel Optimization Based Control Determination against Voltage Collapse with respect to System wide Disturbances as well as Undesirable Component Protection
针对系统范围干扰以及不良组件保护的电压崩溃的新颖的基于优化的控制确定
  • 批准号:
    0500884
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
A Comprehensive Approach to Study Static and Dynamic Aspectsof Voltage Stability
研究电压稳定性静态和动态方面的综合方法
  • 批准号:
    9414131
  • 财政年份:
    1994
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Research Initiation Award: A Unified Methodology to Study the Nonlinear Dynamical Phenomena in Electrical Power Systems via Bifurcation Theory
研究启动奖:通过分岔理论研究电力系统非线性动态现象的统一方法
  • 批准号:
    9108356
  • 财政年份:
    1991
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了