Collaborative Research: Massively Parallel Simulations of Compact Objects

协作研究:紧凑物体的大规模并行模拟

基本信息

  • 批准号:
    1912930
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This award supports research in relativity and relativistic astrophysics and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. The LIGO and VIRGO gravitational wave detectors are beginning to make new discoveries on a weekly basis. The gravitational waves that they detect are generated in the mergers of two compact objects, such as black holes or neutron stars. Gravitational waves carry important information about their origin that can extracted through careful comparisons to theoretical calculations, such as full-scale computer simulations of binary mergers. This project will study mergers of binary neutron stars and black holes using computer simulations created by Dendro-GR, a new computer code that runs very efficiently on the largest supercomputers. This work will also help push forward current computational capabilities to permit better and faster waveform calculations to be made. These efforts will aid in expanding the use of gravitational wave detections from confirming general relativity to providing additional, even more stringent tests of both the theory and other possible competing theories. Combining data from computer simulations with both gravitational and electromagnetic observations will allow us to probe, in a manner heretofore impossible, the physics of black holes and neutron stars, of gamma-ray bursts, of kilonovae and supernovae, and of even the formation of the heaviest elements on the periodic table. Work done for this project will promote the progress of science and contribute to undergraduate and graduate training in multiple STEM fields including computer science, mathematics, and physics. Finally, Dendro-GR is an open source project.The overarching purpose of this project is to study the dynamics of merging binary compact objects at the frontier of current computational capabilities. The wavelet-based refinement and computational efficiency of Dendro-GR allows the modeling of a wider variety of possible merger scenarios, enhancing the ability to both detect and understand these high-energy events, as well as search for possible new physics beyond our current gravitational models. The efforts will be directed primarily at the following goals: (1) Deploying new computational algorithms and abilities to determine gravitational waveforms for binary neutron star inspirals and mergers of sufficient accuracy that they are usable in improved waveform catalogs. (2) Investigating binary black hole inspirals and mergers with large mass ratios both to understand this class of largely unexplored binaries and to expand the range of current waveform catalogs. (3) Calculating waveforms from binary black hole mergers within a family of alternative gravitational theories in order to probe possible deviations from the predictions of general relativity and to search for new physics beyond our current model for gravity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并涉及美国国家科学基金会“宇宙之窗”大创意的优先领域。 LIGO 和 VIRGO 引力波探测器开始每周都有新发现。他们探测到的引力波是在两个致密天体(例如黑洞或中子星)合并时产生的。引力波携带着有关其起源的重要信息,可以通过仔细比较理论计算(例如双星合并的全面计算机模拟)来提取这些信息。该项目将使用 Dendro-GR 创建的计算机模拟来研究双中子星和黑洞的合并,Dendro-GR 是一种新的计算机代码,可以在最大的超级计算机上非常高效地运行。 这项工作还将有助于推动当前的计算能力,以实现更好更快的波形计算。这些努力将有助于扩大引力波探测的用途,从证实广义相对论到对该理论和其他可能的竞争理论提供额外的、甚至更严格的测试。 将计算机模拟的数据与引力和电磁观测相结合,将使我们能够以一种迄今为止不可能的方式探索黑洞和中子星、伽马射线爆发、千新星和超新星的物理现象,甚至是宇宙形成的物理现象。元素周期表上最重的元素。该项目所做的工作将促进科学进步,并为计算机科学、数学和物理等多个 STEM 领域的本科生和研究生培训做出贡献。最后,Dendro-GR 是一个开源项目。该项目的总体目的是研究在当前计算能力的前沿合并二进制紧凑对象的动态。 Dendro-GR 基于小波的细化和计算效率允许对更广泛的可能合并场景进行建模,增强检测和理解这些高能事件的能力,以及寻找超越我们当前引力的可能新物理的能力模型。 这些努力将主要针对以下目标:(1)部署新的计算算法和能力来确定双中子星螺旋和合并的引力波形,其精度足够高,可用于改进的波形目录。 (2) 研究具有大质量比的双黑洞螺旋和合并,以了解此类很大程度上未经探索的双星并扩大当前波形目录的范围。 (3) 计算一系列替代引力理论中双黑洞合并的波形,以探究与广义相对论预测可能存在的偏差,并寻找超越当前引力模型的新物理学。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Local Timestepping on Octree Grids
八叉树网格上的可扩展本地时间步长
Massively parallel simulations of binary black holes with adaptive wavelet multiresolution
自适应小波多分辨率双黑洞大规模并行模拟
  • DOI:
    10.1103/physrevd.107.064035
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Fernando, Milinda;Neilsen, David;Zlochower, Yosef;Hirschmann, Eric W.;Sundar, Hari
  • 通讯作者:
    Sundar, Hari
Solving PDEs in space-time: 4D tree-based adaptivity, mesh-free and matrix-free approaches
求解时空偏微分方程:基于 4D 树的自适应性、无网格和无矩阵方法
  • DOI:
    10.1145/3295500.3356198
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ishii, Masado;Fernando, Milinda;Saurabh, Kumar;Khara, Biswajit;Ganapathysubramanian, Baskar;Sundar, Hari
  • 通讯作者:
    Sundar, Hari
A GPU-Accelerated AMR Solver for Gravitational Wave Propagation
用于引力波传播的 GPU 加速 AMR 求解器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hari Sundar其他文献

Skeleton based shape matching and retrieval
  • DOI:
    10.1109/smi.2003.1199609
  • 发表时间:
    2003-05-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hari Sundar;D. Silver;N. Gagvani;Sven J. Dickinson
  • 通讯作者:
    Sven J. Dickinson
Localization landscape of optical waves inmultifractal photonic membranes
多重分形光子膜中光波的局域化景观
  • DOI:
    10.1364/ome.520201
  • 发表时间:
    2024-01-26
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Tornike Shubitidze;Yilin Zhu;Hari Sundar;L. D. Negro
  • 通讯作者:
    L. D. Negro
Finch : Domain Speci(cid:28)c Language and Code Generation for Finite Element and Finite Volume in Julia
Finch:Julia 中有限元和有限体积的 Domain Speci(cid:28)c 语言和代码生成
  • DOI:
    10.1016/0167-4781(92)90494-k
  • 发表时间:
    1992-01-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Heisler;Aadesh Deshmukh;Hari Sundar
  • 通讯作者:
    Hari Sundar
Rodents consuming the same toxic diet harbor a unique taxonomic and functional core microbiome
食用相同有毒饮食的啮齿动物拥有独特的分类学和功能性核心微生物组
TANGO: A GPU optimized traceback approach for sequence alignment algorithms
TANGO:用于序列比对算法的 GPU 优化回溯方法

Hari Sundar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hari Sundar', 18)}}的其他基金

Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
  • 批准号:
    2207616
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices
合作研究:随机激光器件的工程分数光子传输
  • 批准号:
    2110215
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
  • 批准号:
    2004236
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
  • 批准号:
    1808652
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CI: Scalable Multigrid Algorithms for Solving Elliptic PDEs on Power-Efficient Clusters
CRII:CI:用于求解节能集群上椭圆偏微分方程的可扩展多重网格算法
  • 批准号:
    1464244
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243706
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243704
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243703
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243705
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms
合作研究:AF:小型:高效大规模并行算法
  • 批准号:
    2218677
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了