Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices

合作研究:随机激光器件的工程分数光子传输

基本信息

  • 批准号:
    2110215
  • 负责人:
  • 金额:
    $ 9.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The rapid development of miniaturized lasers enabled consumer applications of optical technology that have radically transformed our information society ranging from high-speed communication systems to integrated optical sensors, scanners, and high-resolution imaging devices. Moreover, the emerging paradigm of quantum information technology requires our ability to enhance the rate of optical emission processes in miniaturized laser devices that can operate efficiently over multiple frequency bands and release “photons on demand”. Responding to these challenges, this research project advances the understanding of novel laser devices that rely on engineered wave transport and localization effects in structurally disordered media. The research team utilizes novel computational methods in partnership with nanofabrication and device characterization to design and develop a new class of laser structures with broadband behavior for use as miniaturized light sources in the next generation of power-efficient nanophotonics devices, such as on-chip miniaturized spectrometers, optical sensors, imaging systems, and more robust quantum sources. The project supports one graduate student at Boston University and at the University of Utah and encourages the involvement of undergraduate students in the research through a vibrant outreach program at both institutions. The computational and experimental frameworks developed by the PIs will be disseminated through course projects at both Boston University and the University of Utah. An important component of this outreach plan is to attract underrepresented minorities to a career in computational science and optical engineering through participation in the project. This project responds to the compelling challenges posed by the multi-scale modeling of random laser devices with tailored photon transport properties by proposing a combined theoretical and experimental approach based on the efficient numerical solution of fractional differential operators in non-regular three-dimensional domains. Fractional calculus operators exhibit non-local characteristics in space and history-effects in time that naturally describe correlation effects in the wave transport across non-homogenous, aperiodic media. These effects typically provide significant discretization and computational challenges. However, building on the initial success of fractional wave-diffusion equation models for anomalous wave transport, this project develops a new methodology to efficiently couple fractional transport equations to the electrodynamics description of active photonic devices with complex non-periodic geometries. To accomplish this task, we build on the success of the open-source spectral/hp element library Nektar++ framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/hp element method. The project uses novel mathematical techniques of fractional operators in concert with the fabrication and experimental characterization of random laser devices realized from sub-wavelength photonic membranes. Based on this efficient platform, the project demonstrates lasing behavior in tailored random structures and aperiodic media that exhibit ultra-slow photon sub-diffusion phenomena by design. The primary intellectual merit of the project is the development of a novel class of cost-effective, miniaturized, disorder-engineered random lasers with tailored photon diffusion properties that can find applications as more robust photon sources for classical and quantum optical information processing. This project enables a substantial broader impact by providing the foundation for the next generation of random laser devices for optical imaging, sensing, and spectroscopy, and laying the foundation for broader adoption of fractional operators in computational photonic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微型激光器的快速发展促进了光学技术的消费应用,从高速通信系统到集成光学传感器、扫描仪和高分辨率成像设备,从根本上改变了我们的信息社会。此外,新兴的量子信息技术范式需要。我们有能力提高微型激光设备的光发射过程速率,这些设备可以在多个频段上高效运行并释放“按需光子”。为了应对这些挑战,该研究项目增进了对依赖工程波的新型激光设备的理解。运输和本地化效应研究团队利用新颖的计算方法,结合纳米制造和器件表征,设计和开发具有宽带行为的新型激光结构,用作下一代节能纳米光子器件的小型化光源,例如该项目支持波士顿大学和犹他大学的一名研究生,并通过活跃的推广计划鼓励本科生参与研究。 PI 开发的计算和实验框架将通过波士顿大学和犹他大学的课程项目进行传播,该推广计划的一个重要组成部分是通过参与吸引代表性不足的少数群体从事计算科学和光学工程职业。该项目通过提出一种基于非正则三阶分数微分算子的有效数值解的理论和实验相结合的方法,应对具有定制光子传输特性的随机激光器件的多尺度建模所带来的严峻挑战。维度分数阶微积分算子在空间和时间上表现出非局部特征,自然地描述了非均匀、非周期介质中的波传输中的相关效应,但是,这些效应通常会带来显着的离散化和计算挑战。由于反常波传输的分数波扩散方程模型取得了初步成功,该项目开发了一种新方法,可以有效地将分数传输方程与具有复杂非周期的有源光子器件的电动力学描述耦合起来。为了完成这项任务,我们以开源光谱/hp 元素库 Nektar++ 框架的成功为基础,该框架旨在支持使用光谱/hp 元素方法开发偏微分方程的高性能可扩展求解器。分数算子的新颖数学技术与亚波长光子膜实现的随机激光器件的制造和实验表征相结合,基于这个高效的平台,该项目展示了定制随机结构和非周期介质中的激光行为。该项目的主要智力优点是开发出一种新型的具有成本效益的、小型化的、无序设计的随机激光器,具有定制的光子扩散特性,可以找到更多的应用。该项目为用于光学成像、传感和光谱学的下一代随机激光设备奠定了基础,并为更广泛地采用分数算子奠定了基础,从而产生了更广泛的影响。计算光子该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localization landscape of optical waves in multifractal photonic membranes
多重分形光子膜中光波的局域化景观
  • DOI:
    10.1364/ome.520201
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Shubitidze, Tornike;Zhu, Yilin;Sundar, Hari;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hari Sundar其他文献

Skeleton based shape matching and retrieval
  • DOI:
    10.1109/smi.2003.1199609
  • 发表时间:
    2003-05-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hari Sundar;D. Silver;N. Gagvani;Sven J. Dickinson
  • 通讯作者:
    Sven J. Dickinson
Localization landscape of optical waves inmultifractal photonic membranes
多重分形光子膜中光波的局域化景观
  • DOI:
    10.1364/ome.520201
  • 发表时间:
    2024-01-26
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Tornike Shubitidze;Yilin Zhu;Hari Sundar;L. D. Negro
  • 通讯作者:
    L. D. Negro
Finch : Domain Speci(cid:28)c Language and Code Generation for Finite Element and Finite Volume in Julia
Finch:Julia 中有限元和有限体积的 Domain Speci(cid:28)c 语言和代码生成
  • DOI:
    10.1016/0167-4781(92)90494-k
  • 发表时间:
    1992-01-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Heisler;Aadesh Deshmukh;Hari Sundar
  • 通讯作者:
    Hari Sundar
Rodents consuming the same toxic diet harbor a unique taxonomic and functional core microbiome
食用相同有毒饮食的啮齿动物拥有独特的分类学和功能性核心微生物组
TANGO: A GPU optimized traceback approach for sequence alignment algorithms
TANGO:用于序列比对算法的 GPU 优化回溯方法

Hari Sundar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hari Sundar', 18)}}的其他基金

Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
  • 批准号:
    2207616
  • 财政年份:
    2022
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
  • 批准号:
    2004236
  • 财政年份:
    2020
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Massively Parallel Simulations of Compact Objects
协作研究:紧凑物体的大规模并行模拟
  • 批准号:
    1912930
  • 财政年份:
    2019
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
  • 批准号:
    1808652
  • 财政年份:
    2018
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
CRII: CI: Scalable Multigrid Algorithms for Solving Elliptic PDEs on Power-Efficient Clusters
CRII:CI:用于求解节能集群上椭圆偏微分方程的可扩展多重网格算法
  • 批准号:
    1464244
  • 财政年份:
    2015
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant

相似国自然基金

基于中间带工程的非铅锑基钙钛矿薄膜制备及室内光伏性能研究
  • 批准号:
    12304043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于点云扫描规划的机电综合管线工程三维重建方法与施工质量智能检测研究
  • 批准号:
    52308311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工程化感觉神经在骨修复过程中自适应调控成骨/破骨平衡及其机制研究
  • 批准号:
    82372381
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
工程化细胞膜纳米囊泡兼具屏障穿越、肿瘤靶向和免疫调控功能用于胶质瘤免疫治疗研究
  • 批准号:
    82372106
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于肿瘤微环境响应表达IL-15减毒工程菌在肿瘤免疫治疗中的研究
  • 批准号:
    82303771
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了