Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
基本信息
- 批准号:2207616
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The dawn of gravitational wave astronomy is just beginning, and the LIGO and Virgo gravitational wave detectors have already made some stunning discoveries. Future upgrades to these detectors, as well as the advent of new detectors, such as Kagra, will significantly expand the range of gravitational wave science. As the sensitivity of gravitational wave detectors improves over the next decade, the accuracy of numerical solutions of these events must correspondingly increase by at least an order of magnitude in the same time frame. This is a significant computational challenge that must be met to enable the full scientific potential of the new detectors. This project will study mergers of binary neutron stars and black holes using computer simulations created by Dendro-GR, a new computer code that runs very efficiently on the largest supercomputers. Tests of general relativity will also be performed by examining alternative models of gravity. New algorithms for solving differential equations will be explored to improve the efficiency of long simulations of binary mergers. Work done for this project will promote the progress of science and contribute to undergraduate and graduate training in multiple STEM fields including computer science, mathematics, and physics. Finally, Dendro-GR is an open source project.This project will study the dynamics of merging binary compact objects at the frontier of current computational capabilities. The ability to model a wide variety of possible mergers will correspondingly increase the ability of gravitational wave scientists to find and understand these high-energy events, and to search for possible new physics that lies beyond our current gravitational models. This project will be directed at the following goals: (1) The Dendro-GR computational framework will be expanded to calculate gravitational waveforms for binary neutron star inspirals of sufficient accuracy to be used in waveform catalogs. (2) Binary black hole inspirals with large mass ratios will be studied to expand the range of current waveform catalogs. (3) Gravitational waveforms for merging black hole binaries will be calculated within alternative gravitational theories to probe possible deviations from the predictions of general relativity and to search for new physics beyond our current model for gravity. (4) The computational challenge of improving accuracy in numerical relativity will be studied by focusing on reducing the time-to-solution. This complicated problem requires a broad approach that uses GPUs, innovative finite differencing, improved spatial discretizations, and exposing the temporal discretization to more parallelism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
引力波天文学的曙光才刚刚开始,LIGO 和 Virgo 引力波探测器已经取得了一些惊人的发现。这些探测器的未来升级,以及卡格拉等新型探测器的出现,将显着扩大引力波科学的范围。随着未来十年引力波探测器灵敏度的提高,这些事件的数值解的精度必须在同一时间范围内相应提高至少一个数量级。这是一项重大的计算挑战,必须满足这一挑战才能充分发挥新探测器的科学潜力。该项目将使用 Dendro-GR 创建的计算机模拟来研究双中子星和黑洞的合并,Dendro-GR 是一种新的计算机代码,可以在最大的超级计算机上非常高效地运行。广义相对论的测试也将通过检查引力的替代模型来进行。将探索求解微分方程的新算法,以提高二元合并的长时间模拟的效率。该项目所做的工作将促进科学进步,并为计算机科学、数学和物理等多个 STEM 领域的本科生和研究生培训做出贡献。最后,Dendro-GR 是一个开源项目。该项目将研究在当前计算能力的前沿合并二进制紧凑对象的动态。对各种可能的合并进行建模的能力将相应地提高引力波科学家发现和理解这些高能事件的能力,并寻找超出我们当前引力模型的可能的新物理学的能力。该项目将致力于实现以下目标:(1)Dendro-GR计算框架将得到扩展,以计算双中子星螺旋的引力波形,其精度足以用于波形目录。 (2)研究大质量比的二元黑洞螺旋,以扩大当前波形目录的范围。 (3)合并黑洞双星的引力波形将在替代引力理论中计算,以探测与广义相对论预测的可能偏差,并寻找超出我们当前引力模型的新物理学。 (4) 将通过重点减少求解时间来研究提高数值相对论精度的计算挑战。这个复杂的问题需要一种广泛的方法,使用 GPU、创新的有限差分、改进的空间离散化以及将时间离散化暴露于更多并行性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hari Sundar其他文献
Skeleton based shape matching and retrieval
- DOI:
10.1109/smi.2003.1199609 - 发表时间:
2003-05-12 - 期刊:
- 影响因子:0
- 作者:
Hari Sundar;D. Silver;N. Gagvani;Sven J. Dickinson - 通讯作者:
Sven J. Dickinson
Localization landscape of optical waves inmultifractal photonic membranes
多重分形光子膜中光波的局域化景观
- DOI:
10.1364/ome.520201 - 发表时间:
2024-01-26 - 期刊:
- 影响因子:2.8
- 作者:
Tornike Shubitidze;Yilin Zhu;Hari Sundar;L. D. Negro - 通讯作者:
L. D. Negro
Rodents consuming the same toxic diet harbor a unique taxonomic and functional core microbiome
食用相同有毒饮食的啮齿动物拥有独特的分类学和功能性核心微生物组
- DOI:
10.1051/npvelsa/2024011 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tess E Stapleton;LeAnn Lindsey;Hari Sundar;M. Dearing - 通讯作者:
M. Dearing
Finch : Domain Speci(cid:28)c Language and Code Generation for Finite Element and Finite Volume in Julia
Finch:Julia 中有限元和有限体积的 Domain Speci(cid:28)c 语言和代码生成
- DOI:
10.1016/0167-4781(92)90494-k - 发表时间:
1992-01-06 - 期刊:
- 影响因子:0
- 作者:
E. Heisler;Aadesh Deshmukh;Hari Sundar - 通讯作者:
Hari Sundar
TANGO: A GPU optimized traceback approach for sequence alignment algorithms
TANGO:用于序列比对算法的 GPU 优化回溯方法
- DOI:
10.1145/3624062.3625128 - 发表时间:
2023-11-12 - 期刊:
- 影响因子:0
- 作者:
LeAnn Lindsey;Muhammad Haseeb;Hari Sundar;M. Awan - 通讯作者:
M. Awan
Hari Sundar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hari Sundar', 18)}}的其他基金
Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices
合作研究:随机激光器件的工程分数光子传输
- 批准号:
2110215 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
- 批准号:
2004236 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Massively Parallel Simulations of Compact Objects
协作研究:紧凑物体的大规模并行模拟
- 批准号:
1912930 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808652 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CRII: CI: Scalable Multigrid Algorithms for Solving Elliptic PDEs on Power-Efficient Clusters
CRII:CI:用于求解节能集群上椭圆偏微分方程的可扩展多重网格算法
- 批准号:
1464244 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Accelerating the Commercial Readiness of Organic Semiconductor Systems (ACROSS)
合作研究:DMREF:加速有机半导体系统的商业准备(ACROSS)
- 批准号:
2323423 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Accelerating the Commercial Readiness of Organic Semiconductor Systems (ACROSS)
合作研究:DMREF:加速有机半导体系统的商业准备(ACROSS)
- 批准号:
2323424 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别: