GOALI: SpecEES: Collaborative Research: Lens Antenna Subarrays and 3D Hardware Integration for Energy Efficient and High-Data Rate Mm-Wave Wireless Networks

目标:SpecEES:协作研究:用于节能和高数据速率毫米波无线网络的透镜天线子阵列和 3D 硬件集成

基本信息

  • 批准号:
    1923857
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The increasing demand for wireless data has led to interest in wireless communication at mm-wave frequency bands where a large amount of spectrum is available, thus enabling high data rates for next generation wireless networks. However, conventional mm-wave links require high power transmitters, making transmitter efficiency critical. Additionally, these links must support multiple users at the same time. This project will develop both energy and spectrum efficient transmitters and receivers operating at mm-wave frequencies with innovation at all layers of the wireless link from communication protocols to transmitter/receiver integration circuits and antenna/lens design. In addition, advanced 3D printing techniques for low-cost manufacturing of mm-wave arrays will be studied. From the technology perspective, the proposed mm-wave network architectures offering high bandwidth, low latency and low-cost communications solutions will create more high-tech jobs and have major economic impact. The educational impact of the project includes curriculum enhancement, graduate course development, and research training for graduate students which also includes an emphasis on professional development and research management. The project will also expand research opportunities for high-school students and students from underrepresented groups, creating and expanding the pipeline of STEM students. A strong collaboration with industry partners will improve dissemination of the technology advances along with important training opportunities for students working on the project.Massive antenna arrays, with hundreds of elements, capable of high gain and multiple-input multiple-output (MIMO)/multi-beamforming are attractive for multi-user wireless links at mm-wave frequencies. However, achieving such MIMO operation through digital beamforming is prohibitive due to costly and power-hungry mm-wave signal chains, analog-to-digital and digital-to-analog converters required for each antenna element. As a solution, hybrid MIMO architectures with reduced number of mm-wave signal chains have recently attracted interest for practical realizations of multiple MIMO stream transmissions. However, these architectures still exhibit drawbacks in terms of spectrum and energy efficiency and do not address hardware complexity issues. This project aims to address fundamental challenges in energy efficiency, spectrum efficiency, and hardware complexity in large mm-wave arrays through a lens antenna subarray (LAS) approach. The research plan is based on an end-to-end investigation that includes antenna array designs within the LAS scheme, mm-wave transceivers that leverage LAS, physical and media access control layer algorithms utilizing LAS, and low-cost packaging with emerging additive manufacturing technology. The project is led by the University of South Florida and Oregon State University, leveraging industrial collaboration partnerships with Keysight Technologies for mm-wave device, system, network characterization, and GlobalFoundries for silicon integrated circuit design and fabrication. The main contribution of this project is the LAS architecture: It outperforms traditional hybrid MIMO solutions by reducing hardware complexity and power consumption with minimal impact on wireless channel capacity per chain, resulting in significantly higher energy efficiency measured by data rate per unit power. The second major advance is to address system and hardware challenges in realizing scalable integrated mm-wave LAS transceivers to achieve this superior energy efficiency. The third major advance is addressing the cost effectiveness of mm-wave network deployment within the mass-scale communications market through innovative packaging and integration solutions using additive manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对无线数据的需求不断增长,导致在MM波频带上有无线通信的兴趣,那里有大量频谱,从而为下一代无线网络提供了高数据速率。但是,常规的MM波连接需要高功率发射器,从而使发射机效率至关重要。此外,这些链接必须同时支持多个用户。该项目将在MM波频率下运行的能量和频谱有效的发射器和接收器,并在无线链路的所有层中进行创新,从通信协议到发射器/接收器集成电路以及天线/镜头设计。此外,将研究用于低成本制造的高级3D打印技术。从技术的角度来看,拟议的MM波网络体系结构提供高带宽,低潜伏期和低成本通信解决方案将创造更多高科技的就业机会,并产生重大的经济影响。该项目的教育影响包括对研究生的课程增强,研究生课程的发展以及研究培训,其中还重点是专业发展和研究管理。该项目还将为来自代表性不足的小组的高中生和学生扩大研究机会,从而创建和扩展STEM学生的管道。与行业合作伙伴的强有力合作将改善技术进步的传播,并为从事该项目工作的学生提供重要的培训机会。具有数百个要素的质量天线阵列(能够具有高增益和多输入多输出(MIMO)/多光束形式)对MM-Wave频率的多用户无线链接有吸引力​​。但是,由于每个天线元件所需的昂贵和渴望的MM波信号链,类似于数字和数字到数字转换器,因此通过数字波束成型实现这种MIMO操作是令人难以置信的。作为一种解决方案,最近对多种MIMO流传输的实际实现引起了兴趣,具有减少的MM波信号链的混合MIMO架构。但是,这些体系结构仍然在频谱和能源效率方面表现出缺点,并且不能解决硬件复杂性问题。该项目旨在通过镜头天线式亚阵列(LAS)方法解决大型MM波阵列中能效,光谱效率和硬件复杂性的基本挑战。该研究计划基于一项端到端调查,该调查包括LAS方案中的天线阵列设计,使用LAS利用LAS的MM波收发器,利用LAS的物理和媒体访问控制层算法以及具有新兴加成制造技术的低成本包装。该项目由南佛罗里达大学和俄勒冈州立大学领导,利用工业合作伙伴关系与Keysight Technologies用于MM-Wave设备,系统,网络表征和GlobalFoundries,用于硅整合电路设计和制造。该项目的主要贡献是LAS体系结构:它通过降低硬件复杂性和功耗而胜过传统混合MIMO解决方案,对每个链条无线通道容量的影响最小,从而导致通过单位功率数据速率衡量的能源效率明显更高。第二个主要进步是解决系统和硬件挑战,以实现可扩展的集成MM-波LAS收发器,以实现这一卓越的能源效率。第三个主要进步是通过使用增材制造业的创新包装和集成解决方案来解决大众通信市场中MM-WAVE网络部署的成本效益。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lens Antenna Subarrays in mmWave Hybrid MIMO Systems
  • DOI:
    10.1109/access.2020.3041633
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Murat Karabacak;H. Arslan;G. Mumcu
  • 通讯作者:
    Murat Karabacak;H. Arslan;G. Mumcu
Beam Squint Inspired Multiple Access Technique in Massive MIMO Systems
Mm-Wave Beam Steering Antenna Based on Extended Hemispherical Lens Antenna Subarrays
基于扩展半球透镜天线子阵的毫米波波束控制天线
Heuristic Inspired Precoding for Millimeter-Wave MIMO Systems with Lens Antenna Subarrays
Beamspace MIMO Systems With Reduced Beam Selection Complexity
  • DOI:
    10.1109/lcomm.2023.3264104
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sinasi Cetinkaya;H. Arslan
  • 通讯作者:
    Sinasi Cetinkaya;H. Arslan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gokhan Mumcu其他文献

Physical Layer Security using Chaotic Antenna Arrays in Point-to-Point Wireless Communications
在点对点无线通信中使用混沌天线阵列的物理层安全

Gokhan Mumcu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gokhan Mumcu', 18)}}的其他基金

SaTC: CORE: Medium: Physically Unclonable Wireless Systems (PUWS) for RF Fingerprinting and Physical Layer Security
SaTC:核心:中:用于射频指纹识别和物理层安全的物理不可克隆无线系统 (PUWS)
  • 批准号:
    2233774
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Microfluidic Mm-Wave RF Devices with Integrated Actuation
合作研究:具有集成驱动的微流控毫米波射频器件
  • 批准号:
    1920926
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Microfluidically Loaded Highly Reconfigurable Compact RF Devices
职业:微流体负载的高度可重构紧凑型射频设备
  • 批准号:
    1351557
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
  • 批准号:
    52377074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
指定验证者委托计算安全问题研究
  • 批准号:
    62372317
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于指定时间控制的多智能体系统一致性及应用研究
  • 批准号:
    62363033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
不确定非线性系统的指定时间高阶滑模控制理论研究
  • 批准号:
    62373135
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
随机非线性系统的指定时间控制
  • 批准号:
    62373179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2300955
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Development of evaluation index of teamwork ability in PBL international collaborative English active learning
PBL国际协作式英语主动学习团队合作能力评价指标的开发
  • 批准号:
    21K00693
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    2116498
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了