RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless

RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线

基本信息

项目摘要

In-band full-duplex (IBFD) wireless communication technique has tremendous potentials in spectral efficiency because of its simultaneous transmission and reception of information. Although IBFD wireless communication technique has been theoretically investigated and analyzed for years, it remains very challenging to be systemically enabled in practice because of a few hurdles. This project will design and develop deep learning resolutions of self-interference cancellation, power control, and security for future IBFD wireless communication systems. The research can potentially double the wireless spectrum efficiency and impact future wireless standards and policies. Outcomes as publications and open source codes will be made available to the research community to significantly facilitate the research on deep learning-based wireless communications. This project will integrate the research outcomes into course curricula to promote training workforce with knowledge and skills in deep learning and future wireless system design. Underrepresented students will be recruited to participate as research assistants or through special programs, e.g., the Louis Stokes Alliance for Minority Participation Program or the Sloan Engineering Program at the collaborative institutions. This research tackles three major challenges and problems to enable secure, spectrum-efficient, and energy-efficient IBFD wireless communication systems. First, this project will design deep learning based all-digital self-interference cancellation solutions with the potential of doubling the spectrum efficiency. Such design with nonlinear solutions is expected to model the self-interference much more accurately than conventional solutions. The proposed per-symbol estimation of wireless channel condition will provide the highest resolution of channel dynamics to upper layers for cross-layer designs. Second, deep learning power control solutions will be designed to maximize the energy efficiency of IBFD wireless system. These solutions are expected to achieve optimal performance while overcoming the computational and mathematical hurdles in traditional solutions. Third, by data-mining the IBFD channel dynamics, new solutions for wireless security with high degrees of efficiency and secrecy will be developed for IBFD wireless communication systems and networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
带内全双工(IBFD)无线通信技术由于能够同时传输和接收信息,因此在频谱效率方面具有巨大的潜力。尽管IBFD无线通信技术已经在理论上进行了多年的研究和分析,但由于存在一些障碍,在实践中系统地实现仍然非常具有挑战性。 该项目将为未来IBFD无线通信系统设计和开发自干扰消除、功率控制和安全性的深度学习解决方案。该研究有可能使无线频谱效率提高一倍,并影响未来的无线标准和政策。成果将作为出版物和开源代码提供给研究界,以极大地促进基于深度学习的无线通信的研究。该项目将把研究成果整合到课程中,以促进培​​训劳动力掌握深度学习和未来无线系统设计方面的知识和技能。代表性不足的学生将被招募作为研究助理或通过特殊项目参与,例如路易斯斯托克斯少数族裔参与计划联盟或合作机构的斯隆工程项目。这项研究解决了三个主要挑战和问题,以实现安全、频谱高效和节能的 IBFD 无线通信系统。首先,该项目将设计基于深度学习的全数字自干扰消除解决方案,具有使频谱效率翻倍的潜力。这种采用非线性解决方案的设计有望比传统解决方案更准确地模拟自干扰。所提出的无线信道条件的每符号估计将为跨层设计的上层提供最高分辨率的信道动态。其次,将设计深度学习功率控制解决方案,以最大限度地提高IBFD无线系统的能源效率。这些解决方案预计将实现最佳性能,同时克服传统解决方案中的计算和数学障碍。第三,通过对 IBFD 信道动态进行数据挖掘,将为 IBFD 无线通信系统和网络开发高效、保密的新无线安全解决方案。该奖项反映了 NSF 的法定使命,并通过使用评估结果被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CMRM: A Cross-Modal Reasoning Model to Enable Zero-Shot Imitation Learning for Robotic RFID Inventory in Unstructured Environments
A Lightweight Deep Learning Solution for mmWave Human Activity Recognition in Smart Health based on Discrete Fourier Transformation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaoen Wu其他文献

Interference Mitigation for Wireless Body Area Networks with Fast Convergent Game
通过快速收敛博弈减轻无线体域网的干扰
  • DOI:
    10.1109/glocom.2017.8255013
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tigang Jiang;Honggang Wang;Shaoen Wu
  • 通讯作者:
    Shaoen Wu
Security Risks Concerns of Generative AI in the IoT
物联网中生成式人工智能的安全风险问题
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Honghui Xu;Yingshu Li;Olusesi Balogun;Shaoen Wu;Yue Wang;Zhipeng Cai
  • 通讯作者:
    Zhipeng Cai
Real Time 3D Indoor Human Image Capturing Based on FMCW Radar
基于FMCW雷达的实时3D室内人体图像捕获
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanqing Guo;N. Zhang;Wenjun Shi;Saeed AlQarni;Shaoen Wu
  • 通讯作者:
    Shaoen Wu
Opportunistic Random Access with Temporal Fairness in Wireless Networks
无线网络中具有时间公平性的机会随机接入
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Tang;Jagadeesh Balasubramani;Lixing Song;Shaoen Wu;S. Biaz
  • 通讯作者:
    S. Biaz
ERA: Effective Rate Adaptation for WLANs
ERA:WLAN 的有效速率自适应
  • DOI:
    10.1007/978-3-540-79549-0_79
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Biaz;Shaoen Wu
  • 通讯作者:
    Shaoen Wu

Shaoen Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaoen Wu', 18)}}的其他基金

RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    1923712
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-Based Cloud Infrastructure for Inter-/Multi-Disciplinary Research and Education at a Primarily Undergraduate Institution
MRI:采购基于 GPU 的云基础设施,用于主要本科机构的跨/多学科研究和教育
  • 批准号:
    1726017
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: CCSS: Collaborative Research: Cooperative Unmanned Aerial Vehicles Enabled Scalable Mobile Panoramic Video Surveillance
RUI:CCSS:协作研究:协作无人机实现可扩展移动全景视频监控
  • 批准号:
    1408165
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CI-TEAM Demonstration Project: IT Quadra-S, Information Technology Workforce Training Initiative for Spectator Sports Safety and Security
合作研究:CI-TEAM 示范项目:IT Quadra-S,针对观众体育安全和安保的信息技术劳动力培训计划
  • 批准号:
    1041292
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    2116498
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923601
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    1923676
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了