RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless

RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线

基本信息

  • 批准号:
    1923717
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In-band full-duplex (IBFD) wireless communication technique has tremendous potentials in spectral efficiency because of its simultaneous transmission and reception of information. Although IBFD wireless communication technique has been theoretically investigated and analyzed for years, it remains very challenging to be systemically enabled in practice because of a few hurdles. This project will design and develop deep learning resolutions of self-interference cancellation, power control, and security for future IBFD wireless communication systems. The research can potentially double the wireless spectrum efficiency and impact future wireless standards and policies. Outcomes as publications and open source codes will be made available to the research community to significantly facilitate the research on deep learning-based wireless communications. This project will integrate the research outcomes into course curricula to promote training workforce with knowledge and skills in deep learning and future wireless system design. Underrepresented students will be recruited to participate as research assistants or through special programs, e.g., the Louis Stokes Alliance for Minority Participation Program or the Sloan Engineering Program at the collaborative institutions. This research tackles three major challenges and problems to enable secure, spectrum-efficient, and energy-efficient IBFD wireless communication systems. First, this project will design deep learning based all-digital self-interference cancellation solutions with the potential of doubling the spectrum efficiency. Such design with nonlinear solutions is expected to model the self-interference much more accurately than conventional solutions. The proposed per-symbol estimation of wireless channel condition will provide the highest resolution of channel dynamics to upper layers for cross-layer designs. Second, deep learning power control solutions will be designed to maximize the energy efficiency of IBFD wireless system. These solutions are expected to achieve optimal performance while overcoming the computational and mathematical hurdles in traditional solutions. Third, by data-mining the IBFD channel dynamics, new solutions for wireless security with high degrees of efficiency and secrecy will be developed for IBFD wireless communication systems and networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
带内全双工(IBFD)无线通信技术由于能够同时传输和接收信息,因此在频谱效率方面具有巨大的潜力。尽管IBFD无线通信技术已经在理论上进行了多年的研究和分析,但由于存在一些障碍,在实践中系统地实现仍然非常具有挑战性。 该项目将为未来IBFD无线通信系统设计和开发自干扰消除、功率控制和安全性的深度学习解决方案。该研究有可能使无线频谱效率提高一倍,并影响未来的无线标准和政策。成果将作为出版物和开源代码提供给研究界,以极大地促进基于深度学习的无线通信的研究。该项目将把研究成果整合到课程中,以促进培​​训劳动力掌握深度学习和未来无线系统设计方面的知识和技能。代表性不足的学生将被招募作为研究助理或通过特殊项目参与,例如路易斯斯托克斯少数族裔参与计划联盟或合作机构的斯隆工程项目。这项研究解决了三个主要挑战和问题,以实现安全、频谱高效和节能的 IBFD 无线通信系统。首先,该项目将设计基于深度学习的全数字自干扰消除解决方案,具有使频谱效率翻倍的潜力。这种采用非线性解决方案的设计有望比传统解决方案更准确地模拟自干扰。所提出的无线信道条件的每符号估计将为跨层设计的上层提供最高分辨率的信道动态。其次,将设计深度学习功率控制解决方案,以最大限度地提高IBFD无线系统的能源效率。这些解决方案预计将实现最佳性能,同时克服传统解决方案中的计算和数学障碍。第三,通过对 IBFD 信道动态进行数据挖掘,将为 IBFD 无线通信系统和网络开发高效、保密的新无线安全解决方案。该奖项反映了 NSF 的法定使命,并通过使用评估结果被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Machine Learning: Recent Advances and Outlook
  • DOI:
    10.1109/mwc.001.1900341
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    O'Quinn, Wesley;Mao, Shiwen
  • 通讯作者:
    Mao, Shiwen
A Joint Learning and Game-Theoretic Approach to Multi-Dimensional Resource Management in Fog Radio Access Networks
  • DOI:
    10.1109/tvt.2022.3214075
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yaohua Sun;Siqi Chen;Zeyu Wang;S. Mao
  • 通讯作者:
    Yaohua Sun;Siqi Chen;Zeyu Wang;S. Mao
Online Distributed Offloading and Computing Resource Management With Energy Harvesting for Heterogeneous MEC-Enabled IoT
Dealing with Link Blockage in mmWave Networks: A Combination of D2D Relaying, Multi-beam Reflection, and Handover
Beamforming Design for Rate Splitting MIMO
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiwen Mao其他文献

Scheduling of UAV-Assisted Millimeter Wave Communications for High-Speed Railway
无人机辅助高铁毫米波通信调度
  • DOI:
    10.1109/tvt.2022.3176855
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yibing Wang;Yong Niu;Hao Wu;Shiwen Mao;Bo Ai;Zhangdui Zhong;Ning Wang
  • 通讯作者:
    Ning Wang
Optimized Content Caching and User Association for Edge Computing in Densely Deployed Heterogeneous Networks
密集部署的异构网络中边缘计算的优化内容缓存和用户关联
  • DOI:
    10.1109/tmc.2020.3033563
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yun Li;Hui Ma;Lei Wang;Shiwen Mao;Guoyin Wang
  • 通讯作者:
    Guoyin Wang
基于轻量级深度神经网络的电磁信号调制识别技术
  • DOI:
    10.11959/j.issn.1000-436x.2020237
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    张思成;林云;涂涯;Shiwen Mao
  • 通讯作者:
    Shiwen Mao
Complex-Valued Networks for Automatic Modulation Classification
用于自动调制分类的复值网络
Resource Allocation and Computation Offloading in a Millimeter-Wave Train-Ground Network
毫米波车地网络中的资源分配和计算卸载
  • DOI:
    10.1109/tvt.2022.3185331
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Linqian Li;Yong Niu;Shiwen Mao;Bo Ai;Zhangdui Zhong;Ning Wang;Yali Chen
  • 通讯作者:
    Yali Chen

Shiwen Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiwen Mao', 18)}}的其他基金

Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319342
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245608
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306789
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RINGS: l-RIM: Learning based Resilient Immersive Media-Compression, Delivery, and Interaction
RINGS:l-RIM:基于学习的弹性沉浸式媒体压缩、交付和交互
  • 批准号:
    2148382
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
  • 批准号:
    2107190
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCSS: Autonomous Drone and Ground Robot Cooperative Tasking in Complex Indoor Environments
CCSS:复杂室内环境中的自主无人机和地面机器人协作任务
  • 批准号:
    1923163
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Phase I IUCRC Auburn University: Fiber-Wireless Integration and Networking (FiWIN) Center for Heterogeneous Mobile Data Communications
第一阶段 IUCRC 奥本大学:异构移动数据通信光纤无线集成和网络 (FiWIN) 中心
  • 批准号:
    1822055
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
WiFiUS: RF Sensing in Internet of Things: When Deep Learning Meets CSI Tensor
WiFiUS:物联网中的射频传感:当深度学习遇到 CSI Tensor
  • 批准号:
    1702957
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Exploring the 60 GHz Spectral Frontier for Multi-Gigabit Wireless Networks
NetS:小型:协作研究:探索多千兆位无线网络的 60 GHz 频谱前沿
  • 批准号:
    1320664
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Cognitive and Efficient Spectrum Access in Autonomous Wireless Networks
合作研究:EARS:自主无线网络中的认知和高效频谱访问
  • 批准号:
    1247955
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2300955
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
  • 批准号:
    2109971
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    2116498
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923601
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了