Influence of Structure, Interionic Interactions, Interfacial slip and Viscous-electric Coupling Phenomena on the Rheology of Nanoconfined Ionic Liquids

结构、离子间相互作用、界面滑移和粘电耦合现象对纳米限域离子液体流变性的影响

基本信息

项目摘要

The overall goal of this project is to advance the knowledge about structure-property relationships for ionic liquids, which are organic molten salts with tunable compositions. Besides high ionic conductivity, ionic liquids exhibit low volatility, good thermal stability, low flammability, and a wide electrochemical window. These properties could enable safe energy storage devices with higher energy and power density and longer-term stability than is possible with current technologies. However, the performance of these devices depends on the viscosity of the ionic liquids in extremely narrow spaces, and their high viscosity has been linked to reduced electrical conductivity and capacitance, poor wetting of porous electrodes, and lower power density. Therefore, research that addresses the flow characteristics of nanoconfined ionic liquids is of paramount importance. This project will examine the relationship between liquid composition and flow behavior in nanoscale channels. Thereby, it will enable to establish design principles of ionic liquids as electrolytes for next-generation supercapacitor and battery technologies. The proposed research will also contribute to the development of the US work force by training two graduate research assistants at the intersection between materials chemistry and engineering, interfacial science, and rheology. This multi-disciplinary approach will help broaden participation of underrepresented groups in research and benefit engineering education. The research project will address three major issues in the flow of nanoconfined ionic liquids: the relationship between liquid structure and nanorheology, the effects of surface composition (wettability) and nanoscale roughness on material behavior, and the connection between electrostatic and viscous phenomena. The experimental study will use a surface forces apparatus by confining the liquids between two surfaces with controlled characteristics. Measurements of static and hydrodynamic forces as well as dynamic shear will be carried out on a set of judiciously selected ionic liquids with a wide range of compositions. The findings of these studies will be used to develop a framework to predict the rheology of nanoconfined ionic liquids. Furthermore, the knowledge generated by this research will enable practitioners to modulate the nanorheological response of ionic liquids through the precise control of their structure, surface wettability, roughness and potential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的总体目标是增进对离子液体结构-性能关系的了解,离子液体是具有可调成分的有机熔盐。除了高离子电导率外,离子液体还具有低挥发性、良好的热稳定性、低可燃性和宽的电化学窗口。这些特性可以使安全的储能设备具有比现有技术更高的能量和功率密度以及更长期的稳定性。然而,这些器件的性能取决于极窄空间中离子液体的粘度,而它们的高粘度与电导率和电容降低、多孔电极润湿性差以及功率密度较低有关。因此,解决纳米离子液体流动特性的研究至关重要。该项目将研究纳米级通道中液体成分与流动行为之间的关系。因此,它将能够建立离子液体作为下一代超级电容器和电池技术电解质的设计原理。拟议的研究还将通过在材料化学与工程、界面科学和流变学的交叉领域培训两名​​研究生研究助理,为美国劳动力的发展做出贡献。这种多学科方法将有助于扩大代表性不足群体对研究的参与,并使工程教育受益。该研究项目将解决纳米离子液体流动中的三个主要问题:液体结构与纳米流变学之间的关系、表面成分(润湿性)和纳米级粗糙度对材料行为的影响以及静电和粘性现象之间的联系。该实验研究将使用表面力装置,通过将液体限制在具有受控特性的两个表面之间。静态力和水动力以及动态剪切力的测量将在一组精心选择的具有多种成分的离子液体上进行。这些研究的结果将用于开发一个框架来预测纳米离子液体的流变学。此外,这项研究产生的知识将使从业者能够通过精确控制离子液体的结构、表面润湿性、粗糙度和电位来调节离子液体的纳米流变响应。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Nanoscale Roughness on the Lubricious Behavior of an Ionic Liquid
  • DOI:
    10.1002/admi.202000314
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    P. Nalam;Alexis Sheehan;Mengwei Han;R. Espinosa‐Marzal
  • 通讯作者:
    P. Nalam;Alexis Sheehan;Mengwei Han;R. Espinosa‐Marzal
Influence of Water on Structure, Dynamics, and Electrostatics of Hydrophilic and Hydrophobic Ionic Liquids in Charged and Hydrophilic Confinement between Mica Surfaces
  • DOI:
    10.1021/acsami.9b10923
  • 发表时间:
    2019-09-11
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Han, Mengwei;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
Rheological Characteristics of Ionic Liquids under Nanoconfinement
  • DOI:
    10.1021/acs.langmuir.1c03460
  • 发表时间:
    2022-02-27
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Han, Mengwei;Rogers, Simon A.;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
Effects of Layering and Supporting Substrate on Liquid Slip at the Single-Layer Graphene Interface
  • DOI:
    10.1021/acsnano.1c01884
  • 发表时间:
    2021-06-11
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Greenwood, Gus;Kim, Jin Myung;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosa Espinosa-Marzal其他文献

Rosa Espinosa-Marzal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosa Espinosa-Marzal', 18)}}的其他基金

2024 Gordon Research Conference on Tribology: At the Nexus of Science, Engineering, and Sustainability; Lewiston, Maine; 22-28 June 2024
2024 年戈登摩擦学研究会议:科学、工程和可持续发展的纽带;
  • 批准号:
    2348325
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Influence of Double Network, Internetwork Connectivity and Sacrificial Bonds on the Frictional Characteristics of Double Network Hydrogels: Experiments and Modeling
双网络、网络连通性和牺牲键对双网络水凝胶摩擦特性的影响:实验和建模
  • 批准号:
    2154530
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216162
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Control of Contact Friction of Van der Waals Heterostructures
合作研究:范德华异质结构接触摩擦的控制
  • 批准号:
    2306038
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Controlling Friction and Adhesion Using Charged Hydrogel Lubricants During Manufacturing
在制造过程中使用带电水凝胶润滑剂控制摩擦和粘附
  • 批准号:
    2121681
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Calcium Phosphate Mineralization of Hydrogels, their Microstructure and Mechanical Behavior
水凝胶的磷酸钙矿化、微观结构和力学行为
  • 批准号:
    2035122
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Mechanochemical Processes dictating Calcite's Frictional Characteristics
决定方解石摩擦特性的机械化学过程
  • 批准号:
    1856525
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interfaces
合作提案:理解和调整纹理化石墨烯-离子液体界面的分子排列和电荷存储特性
  • 批准号:
    1904681
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Modulating the Adhesion, Friction and Lubrication Characteristics of Few-Atom Thick Materials in Aqueous Environment over Several Length Scales
在多个长度尺度上调节水环境中少原子厚材料的粘附、摩擦和润滑特性
  • 批准号:
    1904216
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Influence of Mesh Size, Type of Crosslinking, Polymer Stiffness and Interfacial Rheology on the Frictional Characteristics of Hydrogels
网格尺寸、交联类型、聚合物刚度和界面流变性对水凝胶摩擦特性的影响
  • 批准号:
    1761696
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

高钠P3型层状锰基氧化物钠离子电池正极材料的晶格结构对多离子活性的调控机理研究
  • 批准号:
    52371225
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
煤沥青衍生碳材料的结构调控及应用于负极界面优化型锌离子混合电容器的研究
  • 批准号:
    22369019
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
零应变异质相耦合的O3型层状钠离子电池正极材料结构调控及电化学性能研究
  • 批准号:
    22379096
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锂取代富金属空位型层状硫磷化物的合成、结构及锂离子输运性能研究
  • 批准号:
    12304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
交联型聚离子液体网络结构构筑及催化CO2转化新过程
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了