SHF: Small: High Performance Graph Pattern Mining System and Architecture

SHF:小型:高性能图模式挖掘系统和架构

基本信息

  • 批准号:
    2127543
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This research project aims to develop high-performance systems and architectures for graph pattern mining, which the key component for various applications, including mining biochemical structures, finding biological conserved subnetworks, finding functional modules, program control-flow analysis, intrusion network analysis, mining communication graphs, social-network analysis, anomaly detection, and mining XML structures. High-performance graph pattern mining enables fundamental scientific research advance. The research is motivated by the need for scaling to large graphs and patterns; the significant gap between the fastest algorithm and general graph pattern mining systems; and the inefficiency in current computer architectures when executing such workloads. The project vertically advances the field by seeking synergies between algorithm, system, architecture, and hardware implementations. The project provides research opportunities to female, minority and undergraduate students to enhance the broader participation of computer science education. In particular, the project involves non-CS major students, introducing them to graph-analytics techniques to solve problems in science and engineering. This research takes a top-down approach, starting from algorithms and developing efficient graph pattern mining systems and architectures. Based on pattern-decomposition algorithms, it develops efficient and general system mechanisms and compiler optimizations with an accurate cost model. To support distributed graph pattern mining with partitioned graphs, it proposes the idea of breaking down pattern-enumeration algorithms to small tasks with a key abstraction, extendable embedding, and builds an efficient execution model to overlap the communication and computation. At the architecture level, the research proposes novel instruction-set extensions and architectural components to support the stream and intersection operations. The proposed techniques will be implemented in two hardware prototypes: (1) a RISC-V processor with an instruction-set extension for stream and intersection operations; and (2) a distributed FPGA accelerator for graph pattern mining with extendable embedding as the primitive. The research outcomes will be published in top system and architecture conferences. The project will deliver several open-source graph pattern mining systems, architecture simulators and hardware prototypes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在开发用于图模式挖掘的高性能系统和架构,它是各种应用的关键组件,包括挖掘生化结构、寻找生物保守子网、寻找功能模块、程序控制流分析、入侵网络分析、挖掘通信图、社交网络分析、异常检测和挖掘 XML 结构。高性能图模式挖掘促进基础科学研究的进步。这项研究的动机是需要扩展到大型图形和模式;最快的算法与通用图模式挖掘系统之间的显着差距;以及当前计算机架构在执行此类工作负载时效率低下。该项目通过寻求算法、系统、架构和硬件实现之间的协同作用来垂直推进该领域。该项目为女性、少数民族和本科生提供研究机会,以促进计算机科学教育的更广泛参与。特别是,该项目涉及非计算机科学专业的学生,​​向他们介绍图形分析技术来解决科学和工程问题。这项研究采用自上而下的方法,从算法开始,开发高效的图模式挖掘系统和架构。它基于模式分解算法,开发高效通用的系统机制和具有准确成本模型的编译器优化。为了支持分区图的分布式图模式挖掘,它提出了将模式枚举算法分解为具有关键抽象、可扩展嵌入的小任务的想法,并构建了一个高效的执行模型来重叠通信和计算。在架构层面,该研究提出了新颖的指令集扩展和架构组件来支持流和交集操作。所提出的技术将在两个硬件原型中实现:(1)具有用于流和交集操作的指令集扩展的 RISC-V 处理器; (2) 分布式 FPGA 加速器,用于以可扩展嵌入为原语的图模式挖掘。研究成果将在顶级系统和架构会议上发表。该项目将提供多个开源图形模式挖掘系统、架构模拟器和硬件原型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuehai Qian其他文献

GoSPA: An Energy-efficient High-performance Globally Optimized SParse Convolutional Neural Network Accelerator
GoSPA:节能高性能全局优化的稀疏卷积神经网络加速器
DNNGuard: An Elastic Heterogeneous DNN Accelerator Architecture against Adversarial Attacks
DNNGuard:针对对抗性攻击的弹性异构 DNN 加速器架构
Investigation on ablative process of CFRP laminates under laser irradiations
激光照射下CFRP层合板烧蚀过程研究
  • DOI:
    10.1016/j.optlastec.2024.110687
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingfeng Chai;Yongkang Luo;Xuehai Qian;Yu Zhang;Lv Zhao
  • 通讯作者:
    Lv Zhao
A Case for Asymmetric Non-Volatile Memory Architecture
非对称非易失性内存架构案例
pLock: A Fast Lock for Architectures with Explicit Inter-core Message Passing
pLock:具有显式内核间消息传递的架构的快速锁定

Xuehai Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuehai Qian', 18)}}的其他基金

SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    2331038
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2333645
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919289
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    1750656
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717984
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: SHF: Improving Programmability of GPGPU/NVRAM Integrated Systems with Holistic Architectural Support
CRII:SHF:通过整体架构支持提高 GPGPU/NVRAM 集成系统的可编程性
  • 批准号:
    1657333
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Accelerating Graph Processing with Vertically Integrated Programming Model, Runtime and Architecture
SHF:小型:利用垂直集成编程模型、运行时和架构加速图形处理
  • 批准号:
    1717754
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2017 International Conference on Architecture Support for Programming Languages and Operating Systems (ASPLOS)
2017 年编程语言和操作系统架构支持国际会议 (ASPLOS) 的学生旅行支持
  • 批准号:
    1720467
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
  • 批准号:
    2223704
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
  • 批准号:
    2134203
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155097
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
  • 批准号:
    2134202
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Predictable Performance for Just-in-Time Compilation
SHF:小型:可预测的即时编译性能
  • 批准号:
    2139612
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了