Collaborative Proposal: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interfaces

合作提案:理解和调整纹理化石墨烯-离子液体界面的分子排列和电荷存储特性

基本信息

项目摘要

Non-technical summary With the ever-increasing need for electrical power on demand, next generation energy storage devices (batteries and supercapacitors) must be designed that can support higher energy densities than current technologies. Therefore, new electrolyte and electrode materials must be explored that allow for higher electrolyte packing densities. To improve electrode/electrolyte interfaces, this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, seeks to understand how the structure of ionic liquids and their arrangement at electrode interfaces may be tuned by precisely controlling electrode geometry on the nanoscale. Single-layer graphene, a carbon-based material, just one-atom thick, which can function as a conductive electrode that is highly flexible, is used to created textured electrodes for this study. The research team investigates the influence of the electrode morphology on the organization of the ionic liquid electrolyte and how it impacts charge storage. In addition to exploring these fundamental science questions, this project supports the education and training of undergraduate and graduate students from diverse backgrounds, at the intersection of materials and surface science, contributing to the development of the energy sector work force in the U.S., by training students in cross-cutting research in a coordinated collaborative environment between the labs of the principle investigators at UIUC and TAMU. Technical summaryWith this grant, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, the principle investigators (Espinosa-Marzal at UIUC and Batteas at TAMU) test the fundamental hypothesis that by controlling surface morphology and substrate-induced charge doping, along with the chemical composition of the ionic liquids, the local packing density of the liquid on graphene can be precisely modulated. This in turn is expected to afford better control over their charge storage properties. To fill the outlined knowledge gap, the team pursues three major lines of research. New methods to prepare graphene surfaces with precisely controlled charge doping and morphology from the atomic to the nanoscale are developed. In addition, the effects of substrate morphology and charge doping on the interfacial structure of ionic liquids and on the characteristics of the electrical double layer are investigated by Atomic Force Microscopy in an electrochemical cell. Furthermore, local and global electrochemical impedance spectroscopy are used to relate the electrical double layer to the differential capacitance of the textured interfaces. These studies allow determining the relative contributions of graphene roughness, charge doping and ionic liquid composition on the electrical double layer and its capacitance. The knowledge gained from this project is expected to enable control of the interfacial assembly of the liquids and stored charge through the modulation of the graphene texture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要随着对电力需求的不断增长,下一代储能设备(电池和超级电容器)的设计必须能够支持比当前技术更高的能量密度。因此,必须探索新的电解质和电极材料,以实现更高的电解质填充密度。为了改善电极/电解质界面,该项目得到了美国国家科学基金会材料研究部固态和材料化学项目的支持,旨在了解如何通过精确控制电极来调节离子液体的结构及其在电极界面上的排列纳米尺度上的几何形状。单层石墨烯是一种碳基材料,只有一个原子厚,可以用作高度柔性的导电电极,用于为本研究创建纹理电极。研究小组研究了电极形态对离子液体电解质组织的影响以及它如何影响电荷存储。除了探索这些基础科学问题外,该项目还支持来自不同背景的本科生和研究生在材料和表面科学交叉领域的教育和培训,通过培训为美国能源行业劳动力的发展做出贡献学生们在 UIUC 和 TAMU 的主要研究人员实验室之间的协调协作环境中进行跨领域研究。技术摘要 在 NSF 材料研究部固态和材料化学项目的支持下,这项资助的主要研究人员(UIUC 的 Espinosa-Marzal 和 TAMU 的 Batteas)测试了基本假设,即通过控制表面形态和基质诱导电荷掺杂以及离子液体的化学成分,可以精确调节石墨烯上液体的局部堆积密度。这反过来又有望更好地控制它们的电荷存储特性。为了填补概述的知识空白,该团队进行了三个主要研究方向。开发了从原子到纳米尺度上精确控制电荷掺杂和形态的石墨烯表面制备新方法。此外,通过原子力显微镜在电化学电池中研究了基底形貌和电荷掺杂对离子液体界面结构和双电层特性的影响。此外,局部和全局电化学阻抗谱用于将双电层与纹理界面的微分电容联系起来。这些研究可以确定石墨烯粗糙度、电荷掺杂和离子液体成分对双电层及其电容的相对贡献。从该项目中获得的知识预计将能够通过石墨烯纹理的调节来控制液体的界面组装和存储的电荷。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential-Dependent Layering in the Electrochemical Double Layer of Water-in-Salt Electrolytes
  • DOI:
    10.1021/acsaem.0c01534
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruixian Zhang;Mengwei Han;Kim Ta;K. Madsen;Xinyi Chen;Xueyong Zhang;R. Espinosa‐Marzal;A. Gewirt
  • 通讯作者:
    Ruixian Zhang;Mengwei Han;Kim Ta;K. Madsen;Xinyi Chen;Xueyong Zhang;R. Espinosa‐Marzal;A. Gewirt
Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration
  • DOI:
    10.1021/acs.nanolett.1c00167
  • 发表时间:
    2021-02-22
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Han, Mengwei;Zhang, Ruixian;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
Insight into the Electrical Double Layer of Ionic Liquids Revealed through Its Temporal Evolution
  • DOI:
    10.1002/admi.202001313
  • 发表时间:
    2020-11-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Han, Mengwei;Kim, Hojun;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosa Espinosa-Marzal其他文献

Rosa Espinosa-Marzal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosa Espinosa-Marzal', 18)}}的其他基金

2024 Gordon Research Conference on Tribology: At the Nexus of Science, Engineering, and Sustainability; Lewiston, Maine; 22-28 June 2024
2024 年戈登摩擦学研究会议:科学、工程和可持续发展的纽带;
  • 批准号:
    2348325
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Influence of Double Network, Internetwork Connectivity and Sacrificial Bonds on the Frictional Characteristics of Double Network Hydrogels: Experiments and Modeling
双网络、网络连通性和牺牲键对双网络水凝胶摩擦特性的影响:实验和建模
  • 批准号:
    2154530
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216162
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Control of Contact Friction of Van der Waals Heterostructures
合作研究:范德华异质结构接触摩擦的控制
  • 批准号:
    2306038
  • 财政年份:
    2023
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Controlling Friction and Adhesion Using Charged Hydrogel Lubricants During Manufacturing
在制造过程中使用带电水凝胶润滑剂控制摩擦和粘附
  • 批准号:
    2121681
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Calcium Phosphate Mineralization of Hydrogels, their Microstructure and Mechanical Behavior
水凝胶的磷酸钙矿化、微观结构和力学行为
  • 批准号:
    2035122
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Influence of Structure, Interionic Interactions, Interfacial slip and Viscous-electric Coupling Phenomena on the Rheology of Nanoconfined Ionic Liquids
结构、离子间相互作用、界面滑移和粘电耦合现象对纳米限域离子液体流变性的影响
  • 批准号:
    1916609
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Mechanochemical Processes dictating Calcite's Frictional Characteristics
决定方解石摩擦特性的机械化学过程
  • 批准号:
    1856525
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Modulating the Adhesion, Friction and Lubrication Characteristics of Few-Atom Thick Materials in Aqueous Environment over Several Length Scales
在多个长度尺度上调节水环境中少原子厚材料的粘附、摩擦和润滑特性
  • 批准号:
    1904216
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Influence of Mesh Size, Type of Crosslinking, Polymer Stiffness and Interfacial Rheology on the Frictional Characteristics of Hydrogels
网格尺寸、交联类型、聚合物刚度和界面流变性对水凝胶摩擦特性的影响
  • 批准号:
    1761696
  • 财政年份:
    2018
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Proposal: MSB-FRA: A macrosystems ecology framework for continental-scale prediction and understanding of lakes
合作提案:MSB-FRA:用于大陆尺度预测和湖泊理解的宏观系统生态学框架
  • 批准号:
    2306364
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2055257
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: RUI: Understanding the context-dependent roles of HOXA5 in cell fate and patterning
合作提案:RUI:了解 HOXA5 在细胞命运和模式中的背景依赖性作用
  • 批准号:
    2019537
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MRA: Understanding how local-scale controls on litter decomposition shape emergent macrosystem biogeochemical patterns
合作提案:MRA:了解局部规模的凋落物分解控制如何塑造新兴宏观系统生物地球化学模式
  • 批准号:
    1926413
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了