CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits

CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制

基本信息

  • 批准号:
    1911168
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

While advances in the ability to collect and store data have made large data sets commonplace, these data sets increasingly consist of information obtained from different sources with various data types and properties that impede the ability to extract knowledge and make decisions. This project focuses on inferring the ranking of a set of objects from heterogeneous datasets with arbitrary noise, which is also known as rank aggregation with heterogeneous information sources. The developed algorithms will be made publicly available as open source software tools, and will significantly expand the applicability of rank aggregation to real-world problems, such as data fusion, information retrieval, crowd-sourcing, recommendation systems, as well as social choice and voting. This project will also provide educational and training opportunities and exposure to sophisticated statistical tools, rigorous theoretical analysis, and the empirical work of extracting knowledge from large heterogeneous data sets. In this project, based on statistical models of data, efficient and scalable rank aggregation algorithms for various settings will be developed along with performance guarantees and fundamental limits, in three complementary research thrusts. First, it will develop rank aggregation algorithms based on flexible latent probabilistic models that exploit side information and allow both ordinal and numerical data types. It will also provide information-theoretic lower bounds on the performance of such algorithms. Second, it will design robust algorithms for latent probabilistic models in which the unknown parameters are a superposition of many structured parameters, and models in which data can be corrupted by arbitrary noise. Finally, the problem of inferring a ranking through interactive bandit algorithms will be studied. This project aims to push the frontier of rank aggregation research, and can potentially advance research in machine learning, nonconvex optimization and information theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管收集和存储数据的能力的进步使大量数据集使大量数据集司空见惯,但这些数据集越来越多地包括从不同来源获得的信息,这些信息具有各种数据类型和属性,这些信息和属性会阻碍提取知识和做出决策的能力。该项目着重于从具有任意噪声的异质数据集中推断一组对象的排名,这也称为具有异质信息源的等级聚合。已开发的算法将作为开源软件工具公开提供,并将大大扩展等级聚合到现实世界中问题的适用性,例如数据融合,信息检索,众包,推荐系统以及社交选择和投票。该项目还将提供教育和培训机会,并接触复杂的统计工具,严格的理论分析以及从大型异构数据集中提取知识的经验工作。在该项目中,基于数据的统计模型,将在三个互补的研究推力中开发各种设置的高效且可扩展的等级聚合算法以及性能保证和基本限制。首先,它将基于灵活的潜在概率模型开发等级聚合算法,该模型利用侧面信息并允许序数和数值数据类型。它还将提供有关此类算法性能的信息理论下限。其次,它将为潜在概率模型设计强大的算法,其中未知参数是许多结构化参数的叠加,并且可以通过任意噪声损坏数据的模型。最后,将研究通过交互式强盗算法推断排名的问题。该项目旨在推动等级汇总研究的边界,并有可能在机器学习,非convex优化和信息理论方面提高研究。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来获得支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits
  • DOI:
    10.48550/arxiv.2310.00968
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiwei Di;Tao Jin;Yue Wu;Heyang Zhao;Farzad Farnoud;Quanquan Gu
  • 通讯作者:
    Qiwei Di;Tao Jin;Yue Wu;Heyang Zhao;Farzad Farnoud;Quanquan Gu
Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Wu;Dongruo Zhou;Quanquan Gu
  • 通讯作者:
    Yue Wu;Dongruo Zhou;Quanquan Gu
Active Ranking without Strong Stochastic Transitivity
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Lou;Tao Jin;Yue Wu;Pan Xu;Quanquan Gu;Farzad Farnoud
  • 通讯作者:
    Hao Lou;Tao Jin;Yue Wu;Pan Xu;Quanquan Gu;Farzad Farnoud
Rank Aggregation via Heterogeneous Thurstone Preference Models
  • DOI:
    10.1609/aaai.v34i04.5860
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao Jin;Pan Xu;Quanquan Gu;Farzad Farnoud
  • 通讯作者:
    Tao Jin;Pan Xu;Quanquan Gu;Farzad Farnoud
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons
来自噪声成对比较的异构排名聚合的自适应采样
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanquan Gu其他文献

Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
来自对抗性反馈的上下文决斗强盗的近乎最优算法
  • DOI:
    10.48550/arxiv.2404.10776
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiwei Di;Jiafan He;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease a voxel-based morphometry study
早发和中晚发帕金森病灰质密度的不同模式:基于体素的形态测量研究
  • DOI:
    10.1007/s11682-017-9745-4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Xuan;Xiaojun Guan;Peiyu Huang;Zhujing Shen;Quanquan Gu;Xinfeng Yu;Xiaojun Xu;Wei Luo;Minming Zhang
  • 通讯作者:
    Minming Zhang
Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
使用随机梯度下降匹配 k 稀疏奇偶校验问题的统计查询下界
  • DOI:
    10.48550/arxiv.2404.12376
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Kou;Zixiang Chen;Quanquan Gu;S. Kakade
  • 通讯作者:
    S. Kakade
Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation
用于文本到图像生成的扩散模型的自玩微调
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huizhuo Yuan;Zixiang Chen;Kaixuan Ji;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Iterative Teacher-Aware Learning
迭代式教师意识学习
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luyao Yuan;Dongruo Zhou;Junhong Shen;Jingdong Gao;Jeffrey L. Chen;Quanquan Gu;Y. Wu;Song
  • 通讯作者:
    Song

Quanquan Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanquan Gu', 18)}}的其他基金

Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312094
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
  • 批准号:
    2008981
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1855099
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1903202
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
  • 批准号:
    1906169
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1741342
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Learning with Incomplete and Noisy Knowledge
III:小:知识不完整且有噪音的协作学习
  • 批准号:
    1904183
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1717206
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
  • 批准号:
    1652539
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了