CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization

职业:通过非凸统计优化扩大高维数据中的知识发现

基本信息

  • 批准号:
    1906169
  • 负责人:
  • 金额:
    $ 50.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The past decade has witnessed a surge of research activities on knowledge discovery in high-dimensional data, among which convex optimization-based methods are widely used. While convex optimization algorithms enjoy global convergence guarantees, they are not always scalable to high-dimensional massive data. Motivated by the empirical success of nonconvex methods such as matrix factorization, the objective of this project is to develop a new generation of principled nonconvex statistical optimization algorithms to scale up high-dimensional machine learning methods. This project amplifies the utility of high-dimensional knowledge discovery methods in various fields such as computational genomics and recommendation systems. It incorporates the resulting research outcomes into curriculum development and online courses, to train a new generation of machine learning and data mining practitioners. In addition, special training is provided to K-12 students and community college students for a broader education of modern data analysis techniques.This project consists of three synergistic research thrusts. First, it develops a family of nonconvex algorithms for structured sparse learning, including extensions to both parallel computing and distributed computing. Second, it devises a unified nonconvex optimization framework for low-rank matrix estimation, which covers a wide range of low-rank matrix learning problems such as matrix completion and preference learning. Several acceleration techniques are also explored. Third, it develops a family of alternating optimization algorithms, to solve the bi-convex optimization problem for estimating various complex statistical models. This project integrates modern optimization techniques with model-based statistical thinking, and provides a systematic way to design nonconvex high-dimensional machine learning methods with strong theoretical guarantees. The targeted applications include but not limited to computational genomics, neuroscience, and recommendation systems.
在过去的十年中,在高维数据中见证了有关知识发现的大量研究活动,其中广泛使用了基于凸优化的方法。虽然凸优化算法享有全球收敛的保证,但它们并不总是可扩展到高维大量数据。由非凸方法(例如矩阵分解)的经验成功所激发,该项目的目的是开发新一代的原则性非凸统计优化算法,以扩展高维机器学习方法。该项目放大了在各个领域(例如计算基因组学和推荐系统)中高维知识发现方法的实用性。它将结果的研究成果纳入了课程开发和在线课程中,以培训新一代的机器学习和数据挖掘从业人员。此外,还向K-12学生和社区大学生提供了对现代数据分析技术的更广泛教育的特殊培训。该项目由三个协同的研究推力组成。首先,它为结构化稀疏学习开发了一个非凸算法的家族,包括对并行计算和分布式计算的扩展。其次,它为低级别矩阵估计设计了一个统一的非convex优化框架,该框架涵盖了各种低级别矩阵学习问题,例如矩阵完成和偏好学习。还探索了几种加速技术。第三,它开发了一个交替优化算法的家族,以解决估计各种复杂统计模型的BI-CONVEX优化问题。该项目将现代优化技术与基于模型的统计思维集成在一起,并提供了一种系统的方法来设计非凸高维机器学习方法,并具有强大的理论保证。目标应用包括但不限于计算基因组学,神经科学和推荐系统。

项目成果

期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Global Convergence of Training Deep Linear ResNets
  • DOI:
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Difan Zou;Philip M. Long;Quanquan Gu
  • 通讯作者:
    Difan Zou;Philip M. Long;Quanquan Gu
A Simple and Provably Efficient Algorithm for Asynchronous Federated Contextual Linear Bandits
  • DOI:
    10.48550/arxiv.2207.03106
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiafan He;Tianhao Wang;Yifei Min;Quanquan Gu
  • 通讯作者:
    Jiafan He;Tianhao Wang;Yifei Min;Quanquan Gu
Accelerated Factored Gradient Descent for Low-Rank Matrix Factorization
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongruo Zhou;Yuan Cao;Quanquan Gu
  • 通讯作者:
    Dongruo Zhou;Yuan Cao;Quanquan Gu
Sampling from Non-Log-Concave Distributions via Variance-Reduced Gradient Langevin Dynamics
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Difan Zou;Pan Xu;Quanquan Gu
  • 通讯作者:
    Difan Zou;Pan Xu;Quanquan Gu
A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixiang Chen;Yuan Cao;Quanquan Gu;Tong Zhang
  • 通讯作者:
    Zixiang Chen;Yuan Cao;Quanquan Gu;Tong Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanquan Gu其他文献

Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
来自对抗性反馈的上下文决斗强盗的近乎最优算法
  • DOI:
    10.48550/arxiv.2404.10776
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiwei Di;Jiafan He;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease a voxel-based morphometry study
早发和中晚发帕金森病灰质密度的不同模式:基于体素的形态测量研究
  • DOI:
    10.1007/s11682-017-9745-4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Xuan;Xiaojun Guan;Peiyu Huang;Zhujing Shen;Quanquan Gu;Xinfeng Yu;Xiaojun Xu;Wei Luo;Minming Zhang
  • 通讯作者:
    Minming Zhang
Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
使用随机梯度下降匹配 k 稀疏奇偶校验问题的统计查询下界
  • DOI:
    10.48550/arxiv.2404.12376
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Kou;Zixiang Chen;Quanquan Gu;S. Kakade
  • 通讯作者:
    S. Kakade
Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation
用于文本到图像生成的扩散模型的自玩微调
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huizhuo Yuan;Zixiang Chen;Kaixuan Ji;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Iterative Teacher-Aware Learning
迭代式教师意识学习
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luyao Yuan;Dongruo Zhou;Junhong Shen;Jingdong Gao;Jeffrey L. Chen;Quanquan Gu;Y. Wu;Song
  • 通讯作者:
    Song

Quanquan Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanquan Gu', 18)}}的其他基金

Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312094
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
  • 批准号:
    2008981
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
  • 批准号:
    1911168
  • 财政年份:
    2019
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1903202
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1855099
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1741342
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Learning with Incomplete and Noisy Knowledge
III:小:知识不完整且有噪音的协作学习
  • 批准号:
    1904183
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1717206
  • 财政年份:
    2017
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
  • 批准号:
    1652539
  • 财政年份:
    2017
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

用于富集和浓缩放射性气态流出物中Kr、Xe的多孔材料的理论设计与实验验证
  • 批准号:
    22376153
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
序列缩放攻击下异质多智能体系统的切换事件触发输出同步控制研究
  • 批准号:
    62373180
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可缩放固态系统的量子计算与模拟
  • 批准号:
    11920101005
  • 批准年份:
    2019
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于大规模生物反应器内细胞运动轨迹模拟的动态代谢调控研究
  • 批准号:
    31900073
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
移动视觉搜索中基于特征保持的图像智能缩放技术研究
  • 批准号:
    61772137
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Scaling up Brain Circuit Reconstruction with Human-centric Machine Learning
职业:利用以人为本的机器学习扩大脑回路重建
  • 批准号:
    2239688
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
Scaling-Up Integrative Pain Management in Federally Qualified Health Centers
在联邦合格的健康中心扩大综合疼痛管理
  • 批准号:
    10449763
  • 财政年份:
    2022
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling-Up Integrative Pain Management in Federally Qualified Health Centers
在联邦合格的健康中心扩大综合疼痛管理
  • 批准号:
    10667465
  • 财政年份:
    2022
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling Up Culturally Affirming Pathways to Biomedical Faculty Careers for Native Scholars
扩大本土学者通往生物医学教师职业的文化肯定途径
  • 批准号:
    10452792
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling Up Culturally Affirming Pathways to Biomedical Faculty Careers for Native Scholars
扩大本土学者通往生物医学教师职业的文化肯定途径
  • 批准号:
    10228708
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了