Topology of Manifolds: Interactions between High and Low Dimensions
流形拓扑:高维和低维之间的相互作用
基本信息
- 批准号:1850620
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports funding for the participation of US-based participants in the program "Topology of Manifolds: interactions between high and low dimensions" to be held January 7-18, 2019 at the University of Melbourne, Creswick, Australia. This meeting will bring together students, postdocs, and researchers from all over the world to stimulate research on fundamental questions in manifold theory. It will promote the interaction between researchers in high and low dimensional topology. The meeting is structured as follows: mini-courses in the first week by world experts and a conference in the second week. Both weeks focus on open problems and collaborative work. This structure will greatly benefit early career researchers. Another feature of the meeting that will make it accessible is the theme of the program: promoting interactions high and low dimensions will mitigate the tendency of technical talks and problems. There are two main research aims for this meeting. The first is to identify settings for synergy from the interaction between high and low dimensions and to make progress on problems in these settings. The second is to produce a high-quality problem list to guide future research in manifold topology. It is expected that a well-crafted and publicized problem list arising from the collaboration during the meeting will be of long-term benefit to the mathematical community.An n-manifold is a space which locally resembles n-dimensional Euclidean space. Manifolds of dimension less or equal than 3 are studied using geometric techniques. Manifolds of dimension greater or equal than 5 are studied via surgery theory, which involves a mix of algebraic and differential topology, algebra, and analysis. Dimension 4 is in between; both the high dimensional Whitney Trick and the low-dimensional geometric techniques are only partially successful. The need for the program is that these areas have diverged in the last several decades, to the extent that, often researchers in low/middle/high dimensional topology are not always aware of the current research/techniques in other dimensions. This program is expected to lead to a synergy, benefiting both the experts and the new generation of early career researchers. The website for the event can be found at https://www.matrix-inst.org.au/events/interactions-between-topology-in-high-and-low-dimensions/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持资助美国参与者参加将于 2019 年 1 月 7 日至 18 日在澳大利亚克莱斯威克墨尔本大学举行的“流形拓扑:高维和低维之间的相互作用”项目。 这次会议将汇集来自世界各地的学生、博士后和研究人员,以促进对多种理论中基本问题的研究。它将促进高维和低维拓扑研究人员之间的互动。 会议的结构如下:第一周由世界专家举办迷你课程,第二周举行会议。这两周的重点是开放问题和协作工作。这种结构将使早期职业研究人员受益匪浅。会议的另一个特点是该计划的主题:促进高维度和低维度的互动将减轻技术讨论和问题的趋势。本次会议主要有两个研究目的。 首先是从高维度和低维度之间的相互作用中确定协同作用的环境,并在这些环境中的问题上取得进展。第二是产生高质量的问题列表来指导流形拓扑的未来研究。预计会议期间的合作所产生的精心设计和公开的问题清单将为数学界带来长期利益。 n 流形是局部类似于 n 维欧几里得空间的空间。使用几何技术研究维度小于或等于 3 的流形。维数大于或等于 5 的流形通过外科手术理论进行研究,其中涉及代数和微分拓扑、代数和分析的混合。维度 4 介于两者之间;高维惠特尼技巧和低维几何技术都只取得了部分成功。该计划的需要是,这些领域在过去几十年中已经出现了分歧,以至于低/中/高维拓扑的研究人员通常并不总是了解其他维度的当前研究/技术。该计划预计将产生协同效应,使专家和新一代早期职业研究人员受益。该活动的网站可以在 https://www.matrix-inst.org.au/events/interactions- Between-topology-in-high-and-low-dimensions/ 上找到。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Davis其他文献
Rapid growth from 12 to 23 months of life predicts obesity in a population of Pacific Island children.
太平洋岛屿儿童在 12 至 23 个月内的快速生长预示着肥胖。
- DOI:
- 发表时间:
2012-10-01 - 期刊:
- 影响因子:3.2
- 作者:
May Okihiro;James Davis;L. White;Chriss Derauf - 通讯作者:
Chriss Derauf
Improved sub-pixel stereo correspondences through symmetric refinement
通过对称细化改进了子像素立体对应
- DOI:
10.1109/iccv.2005.119 - 发表时间:
2005-10-17 - 期刊:
- 影响因子:0
- 作者:
Diego F. Nehab;S. Rusinkiewicz;James Davis - 通讯作者:
James Davis
Progression of diabetes, ischemic heart disease, and chronic kidney disease in a three chronic conditions multistate model
三种慢性病多状态模型中糖尿病、缺血性心脏病和慢性肾病的进展
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.5
- 作者:
C. Siriwardhana;Eunjung Lim;James Davis;John J. Chen - 通讯作者:
John J. Chen
Foveated observation of shape and motion
对形状和运动的注视观察
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
James Davis;Xing Chen - 通讯作者:
Xing Chen
The impact of natural disasters on employee turnover: the shocks and after-shocks of hurricane Katrina on IT professionals
自然灾害对员工流动率的影响:卡特里娜飓风对 IT 专业人员的冲击和余震
- DOI:
10.31390/gradschool_dissertations.3959 - 发表时间:
2008 - 期刊:
- 影响因子:2.1
- 作者:
James Davis - 通讯作者:
James Davis
James Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Davis', 18)}}的其他基金
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
- 批准号:
2334590 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
MICA: Stomasense: A New Route to the Proactive Detection and Management of Leaks within Ostomy Pouches
MICA:Stomasense:主动检测和管理造口袋内泄漏的新途径
- 批准号:
MR/W029561/1 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Small: Improving Sanitization and Avoiding Denial of Service Through Correct and Safe Regexes
协作研究:SaTC:核心:小型:通过正确和安全的正则表达式改进清理并避免拒绝服务
- 批准号:
2135156 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Symposium on the Strategy for Resilient Manufacturing Ecosystems through AI
通过人工智能打造弹性制造生态系统战略研讨会
- 批准号:
2132067 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
- 批准号:
2102978 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
- 批准号:
2102978 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Workshop: Aligning AI and U.S. Advanced Manufacturing Competitiveness
研讨会:人工智能与美国先进制造业竞争力的结合
- 批准号:
2049670 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Finite Fields and their Applications at Simon Fraser University
西蒙弗雷泽大学的有限域及其应用
- 批准号:
1905024 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Ionic and Molecular Materials of High Thermal Stability: Design, Structure, and Function
高热稳定性离子和分子材料:设计、结构和功能
- 批准号:
1800122 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
- 批准号:
2240136 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant