SHF: Small: Collaborative Research: Software-Defined Imaging for Energy-Efficient Visual Computing

SHF:小型:协作研究:用于节能视觉计算的软件定义成像

基本信息

  • 批准号:
    1909663
  • 负责人:
  • 金额:
    $ 33.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Image sensors are becoming ubiquitous in daily life as they are incorporated in future intelligent systems including autonomous navigation, health monitoring, and robotics. A central challenge in these camera-driven applications is the inflexibility of current sensor designs and their consequent energy cost. This project designs a new category of image sensors which exploit hardware -- software co-design to attain better sensing at lower cost. The project advances a vertically-integrated design from the mixed-signal sensor circuitry to the computational architecture and the operating system software support. The project's impacts are the creation of new, flexible image sensor systems that can be used for a variety of visual computing applications. The project further seeks to include broadening access to education and research through curriculum material which emphasize smart cameras of the future, outreach to middle and high school students in a summer program to discover imaging applications, and industry engagement through workshops on software-defined imaging. The project focuses on designing software-defined image sensors, which offer new dimensions of configurability along with system support and programming abstractions to support application-specific needs. To achieve this, the project focuses on three main objectives: (1) Design and implementation of configurable sensor primitives, including programmable regions of interest with custom exposure, readout, and quantization, (2) architectures to control these sensor primitives, and to accelerate image signal processing and vision workloads, and (3) operating system services for scheduling the memory needs for our new sensor primitives, and OS interfaces that enable low-latency reactive sensor control for key applications. These innovations are evaluated in an integrative evaluation testbed that includes a fabricated software-defined image sensor prototype and a Field Programmable Gate Array (FPGA)-based system to measure energy and performance for a set of end-to-end visual applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图像传感器在日常生活中变得无处不在,因为它们被纳入未来的智能系统,包括自主导航、健康监测和机器人技术。这些相机驱动应用的一个主要挑战是当前传感器设计的不灵活性及其随之而来的能源成本。该项目设计了一种新型图像传感器,它利用硬件-软件协同设计以更低的成本获得更好的传感效果。该项目推进了从混合信号传感器电路到计算架构和操作系统软件支持的垂直集成设计。该项目的影响是创建新的、灵活的图像传感器系统,可用于各种视觉计算应用。该项目还寻求通过强调未来智能相机的课程材料扩大教育和研究的机会,在暑期项目中向中学生和高中生推广以发现成像应用,并通过软件定义成像研讨会进行行业参与。该项目的重点是设计软件定义的图像传感器,它提供了新的可配置性维度以及系统支持和编程抽象,以支持特定于应用程序的需求。为了实现这一目标,该项目重点关注三个主要目标:(1) 设计和实现可配置的传感器基元,包括具有自定义曝光、读出和量化功能的可编程感兴趣区域,(2) 控制这些传感器基元并加速的架构图像信号处理和视觉工作负载,以及 (3) 用于调度新传感器原语内存需求的操作系统服务,以及为关键应用程序实现低延迟反应式传感器控制的操作系统接口。这些创新在综合评估测试台中进行评估,该测试台包括制造的软件定义图像传感器原型和基于现场可编程门阵列 (FPGA) 的系统,用于测量一组端到端视觉应用的能量和性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Resolution-Based Tradeoffs for Energy-Efficient Visual Computing Systems
节能视觉计算系统的基于自适应分辨率的权衡
  • DOI:
    10.1109/mprv.2021.3052528
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    LiKamWa, Robert;Hu, Jinhan;Kodukula, Venkatesh;Liu, Yifei
  • 通讯作者:
    Liu, Yifei
Rhythmic pixel regions: multi-resolution visual sensing system towards high-precision visual computing at low power
Software-Defined Imaging: A Survey
  • DOI:
    10.1109/jproc.2023.3266736
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Suren Jayasuriya;Odrika Iqbal;Venkatesh Kodukula;Victor Torres;R. Likamwa;A. Spanias
  • 通讯作者:
    Suren Jayasuriya;Odrika Iqbal;Venkatesh Kodukula;Victor Torres;R. Likamwa;A. Spanias
Design and FPGA Implementation of an Adaptive video Subsampling Algorithm for Energy-Efficient Single Object Tracking
  • DOI:
    10.1109/icip40778.2020.9191146
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Odrika Iqbal;Saquib Siddiqui;Joshua Martin;Sameeksha Katoch;A. Spanias;D. Bliss;Suren Jayasuriya
  • 通讯作者:
    Odrika Iqbal;Saquib Siddiqui;Joshua Martin;Sameeksha Katoch;A. Spanias;D. Bliss;Suren Jayasuriya
Squint: A Framework for Dynamic Voltage Scaling of Image Sensors Towards Low Power IoT Vision
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suren Jayasuriya其他文献

Changing Cycle Lengths in State-Transition Models
改变状态转换模型中的周期长度
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    J. Chhatwal;Suren Jayasuriya;E. Elbasha
  • 通讯作者:
    E. Elbasha
Automated Saliency Prediction in Cinema Studies
电影研究中的自动显着性预测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Lein de Leon Yong;Suren Jayasuriya
  • 通讯作者:
    Suren Jayasuriya
Computational Imaging for Human Activity Analysis
用于人类活动分析的计算成像
Adaptive Video Subsampling For Energy-Efficient Object Detection
用于节能目标检测的自适应视频子采样

Suren Jayasuriya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suren Jayasuriya', 18)}}的其他基金

Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
JST: SCC-PG: Understanding Heat Resiliency via Physiological, Mental, and Behavioral Health Factors for Indoor and Outdoor Urban Environments
JST:SCC-PG:通过室内和室外城市环境的生理、心理和行为健康因素了解耐热性
  • 批准号:
    1951928
  • 财政年份:
    2020
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
REU Site: Computational Imaging and Mixed-Reality for Visual Media Creation and Visualization
REU 网站:用于视觉媒体创建和可视化的计算成像和混合现实
  • 批准号:
    1950534
  • 财政年份:
    2020
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Middle School Teacher and Student's Experiences with Artificial Intelligence via Computational Cameras
合作研究:中学教师和学生通过计算相机使用人工智能的体验
  • 批准号:
    1949384
  • 财政年份:
    2020
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Dynamic Light Transport Acquisition and Applications to Computational Illumination
RI:小型:合作研究:动态光传输采集及其在计算照明中的应用
  • 批准号:
    1909192
  • 财政年份:
    2019
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Research Initiation: Exploring Epistemologies where Engineering Meets Art
研究启动:探索工程与艺术相遇的认识论
  • 批准号:
    1830730
  • 财政年份:
    2018
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant

相似国自然基金

诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
  • 批准号:
    82301663
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于丢番图方程小素数解上界估计的研究
  • 批准号:
    12301005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
  • 批准号:
    82371119
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了