AF: Small: Average-Case Fine-Grained Complexity
AF:小:平均情况的细粒度复杂性
基本信息
- 批准号:1909429
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modern world would be impossible without digital cryptography: email, electronic and ATM transactions, operations in the cloud, mobile phone calls, and many more interactions rely heavily on encryption and cryptographic protocols to ensure that the operations are performed securely and confidentially. While the commonly used cryptographic protocols are believed to be secure, their security is based on unproven (though widely believed) mathematical assumptions. If some of these assumptions were false, the protocols would be broken and secure transactions that the world relies on would be compromised. Because of this, cryptography is typically based on a variety of different believable assumptions. Nevertheless, practically all these assumptions require that P is not equal to NP, a widely believed but infamously difficult conjecture in theoretical computer science and mathematics. If complexity classes P and NP were equal, it is expected that practically all of modern cryptography would fail. A major part of this project is to investigate what types of secure cryptographic protocols are still possible, even if P=NP (an unlikely event, but it has not been ruled out). The main goal will be to develop average-case fine-grained complexity, which has many more applications beyond developing new cryptography, such as new algorithmic approaches to the Boolean satisfiability problem and the minimum circuit size problem.Fine-grained complexity studies the time complexity of problems in a more fine-grained way than traditional computational complexity, seeking to classify problems into those solvable in nearly-linear, subquadratic, subcubic runtime and so on, versus those that require essentially quadratic, cubic and more runtime, under plausible assumptions. While fine-grained complexity has had huge successes and is a more practically relevant notion of complexity, it has only been developed for worst-case running time. This project will study average-case notions of fine-grained complexity, from which one can build weak forms of cryptography from alternative foundations: one-way functions, public key cryptography and more, secure against (say) O(n^5)-time bounded adversaries. For very large n, such cryptography would still be secure in practice; more importantly, one could develop cryptography even if traditional foundations failed to provide secure cryptosystems (e.g., P = NP). Among the goals of this project are improved algorithms for average-case versions of Boolean Satisfiability and other important problems, worst-case to average-case fine-grained reductions for key problems in fine-grained complexity, and development of cryptographic primitives such as public-key cryptography based on fine-grained complexity assumptions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
没有数字加密图:电子邮件,电子和ATM交易,云中的操作,手机电话以及更多的其他互动在很大程度上取决于加密和加密协议,以确保操作是安全和机密的,这将是不可能的。尽管人们认为常用的加密协议是安全的,但其安全性基于未经证实的(尽管被广泛认为)数学假设。如果其中一些假设是错误的,则协议将被破坏并确保世界所依赖的交易将受到损害。因此,密码学通常基于各种可信的假设。然而,实际上所有这些假设都要求p不等于NP,这是一种普遍认为但在理论计算机科学和数学中臭名昭著的猜想。如果复杂性类别P和NP平等,则预计几乎所有现代密码学都将失败。该项目的主要部分是研究哪种类型的安全加密协议,即使P = NP(不太可能的事件,但尚未排除)。 The main goal will be to develop average-case fine-grained complexity, which has many more applications beyond developing new cryptography, such as new algorithmic approaches to the Boolean satisfiability problem and the minimum circuit size problem.Fine-grained complexity studies the time complexity of problems in a more fine-grained way than traditional computational complexity, seeking to classify problems into those solvable in nearly-linear, subquadratic, subcubic runtime and so on, versus在合理的假设下,那些基本需要二次,立方体和更多运行时。虽然细粒度的复杂性取得了巨大的成功,并且是一个更实际的复杂性概念,但它仅在最差的运行时间内才开发出来。该项目将研究平均循环概念的细粒度复杂性,从中可以从替代基础中构建弱形式的加密形式:单向功能,公共密钥密码学等等,更安全地抵抗(例如)o(n^5) - 时间有限的对手。对于很大的n,这种加密在实践中仍然是安全的。更重要的是,即使传统基金会未能提供安全的密码系统(例如,p = np),也可以发展加密。该项目的目标之一是改进了布尔值满意度和其他重要问题的平均案例版本的算法,对平均案例的细粒度降低了细粒度复杂性的关键问题的平均细粒度减少以及加密原始的发展,以及基于良好的基础奖励的依据,并反映了NSF的基础奖励,并反映了NSF的基础奖励。更广泛的影响审查标准。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Public-Key Cryptography in the Fine-Grained Setting
细粒度环境中的公钥密码学
- DOI:10.1007/978-3-030-26954-8_20
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:LaVigne, R.;Lincoln, A.;Vassilevska Williams, V.
- 通讯作者:Vassilevska Williams, V.
Faster Random k-CNF Satisfiability
- DOI:10.4230/lipics.icalp.2020.78
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Andrea Lincoln;Adam B. Yedidia
- 通讯作者:Andrea Lincoln;Adam B. Yedidia
New Lower Bounds and Upper Bounds for Listing Avoidable Vertices
列出可避免顶点的新下界和上限
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Deng, Mingyang;Vassilevska Williams, Virginia;Zhong, Ziqian
- 通讯作者:Zhong, Ziqian
Almost-Everywhere Circuit Lower Bounds from Non-Trivial Derandomization
来自非平凡去随机化的几乎所有电路下界
- DOI:10.1109/focs46700.2020.00009
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chen, Lijie;Lyu, Xin;Williams, R. Ryan
- 通讯作者:Williams, R. Ryan
On Oracles and Algorithmic Methods for Proving Lower Bounds
关于证明下界的预言机和算法方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Vyas, Nikhil;Williams, Ryan
- 通讯作者:Williams, Ryan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Williams其他文献
408 ACCURACY OF CONTEMPORARY PROSTATE CANCER STAGING DATA IN THE NEW MEXICO TUMOR REGISTRY: IMPLICATIONS FOR STUDIES THAT UTILIZE SEER
- DOI:
10.1016/j.juro.2010.02.477 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Satyan Shah;Anthony Smith;Virginia Williams;Charles Wiggins - 通讯作者:
Charles Wiggins
Naloxone reversal of mild neurobehavioral depression in normal newborn infants after routine obstetric analgesia
- DOI:
10.1016/s0022-3476(79)80369-8 - 发表时间:
1979-01-01 - 期刊:
- 影响因子:
- 作者:
Bedford W. Bonta;Jeryl V. Gagliardi;Virginia Williams;Joseph B. Warshaw - 通讯作者:
Joseph B. Warshaw
A systematic comparison of two-equation Reynolds-averaged Navier–Stokes turbulence models applied to shock–cloud interactions
应用于冲击云相互作用的两个方程雷诺平均纳维-斯托克斯湍流模型的系统比较
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Matthew D. Goodson;F. Heitsch;Karl Eklund;Virginia Williams - 通讯作者:
Virginia Williams
Virginia Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Williams', 18)}}的其他基金
AF:Small: Algorithms and Limitations for Matrix Multiplication
AF:Small:矩阵乘法的算法和限制
- 批准号:
2330048 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Shortest Paths and Distance Parameters: Faster, Fault-Tolerant and More Accurate
AF:小:最短路径和距离参数:更快、容错且更准确
- 批准号:
2129139 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2019 Theoretical Computer Science (TCS) Women Meeting at Symposium on Theory of Computing (STOC)
NSF 学生旅费补助金用于 2019 年理论计算机科学 (TCS) 女性在计算理论研讨会 (STOC) 上的会议
- 批准号:
1931307 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Graphs and structures for distance estimation
AF:小:用于距离估计的图形和结构
- 批准号:
1740525 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Hardness in Polynomial Time
AF:媒介:协作研究:多项式时间内的硬度
- 批准号:
1740519 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER:Matrix Products: Algorithms and Applications
职业:矩阵产品:算法和应用
- 批准号:
1651838 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
BSF:2012338:Shortest Paths: Upper and lower bounds
BSF:2012338:最短路径:上限和下限
- 批准号:
1740501 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Graphs and structures for distance estimation
AF:小:用于距离估计的图形和结构
- 批准号:
1528078 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Hardness in Polynomial Time
AF:媒介:协作研究:多项式时间内的硬度
- 批准号:
1514339 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Differential geometry of surfaces with Weierstrass-type representaion formulae
具有Weierstrass型表示公式的曲面微分几何
- 批准号:
21K03226 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
確定給付年金の積立金の投資効率評価 ~エージェンシー問題と認識バイアス~
固定收益养老金储备投资效率评价~代理问题与认知偏差~
- 批准号:
21K01578 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
微小重力環境下での結晶成長過程における不純物効果の理論的解明
微重力环境下晶体生长过程中杂质效应的理论阐明
- 批准号:
20K05347 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the Evaluation Index of Urban Structure for the Urban Design Strategy aimed at the Compact City
紧凑城市城市设计策略中城市结构评价指标的探讨
- 批准号:
20K21029 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
- 批准号:
20H01801 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)