CAREER: Statistical Inference Under Information Constraints: Efficient Algorithms and Fundamental Limits

职业:信息约束下的统计推断:高效算法和基本限制

基本信息

  • 批准号:
    1846300
  • 负责人:
  • 金额:
    $ 55.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Data science and machine learning systems have to optimize constraints on the availability of data, computation time, memory for storage, and privacy concerns. For example, while performing web search on mobile devices, one would like the applications to be small in size, communicate as little data as possible, and leak as little about the user as possible. These constraints are often at odds with each other. A system that provides strong privacy guarantees might require more data and computation, and a system that uses little data might require more computation. A fundamental understanding of the limits and trade-offs between constrained resources such as samples, time, memory, communication, and privacy is critical for tackling the many challenges in data science that lay ahead. In spite of many success stories of data science, these trade-offs are poorly understood even in some of the simplest settings. This project aims to establish the fundamental trade-offs between these resources, as well as design efficient schemes that achieve them. The project outcomes can help design faster, communication-frugal, privacy-preserving, and space-efficient learning systems. The project seeks to involve the participation of a diverse group of researchers in this project through outreach activities that target undergraduate students and under-represented communities.The investigator will formulate and study fundamental statistical inference tasks such as distribution estimation, hypothesis testing, and distribution property estimation under the information constraints mentioned above. A particular direction of interest is the impact of the availability of shared randomness on the other constraints for distributed machine learning systems. While the role of randomness has been studied in problems in communication complexity, its role in machine learning systems is often overlooked. The project will integrate ideas from computer science, information theory, machine learning, and statistics, seeking to bridge researchers from these communities. All findings of this project will be disseminated through publications, and will be made publicly available on the investigator's website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据科学和机器学习系统必须优化对数据可用性、计算时间、存储内存和隐私问题的限制。例如,当在移动设备上执行网络搜索时,人们希望应用程序尺寸较小、通信的数据尽可能少,并且泄露的用户信息也尽可能少。这些限制常常相互矛盾。提供强大隐私保证的系统可能需要更多的数据和计算,而使用很少数据的系统可能需要更多的计算。对样本、时间、内存、通信和隐私等受限资源之间的限制和权衡有一个基本的了解,对于解决数据科学中面临的许多挑战至关重要。尽管数据科学有许多成功的案例,但即使在一些最简单的环境中,人们对这些权衡也知之甚少。该项目旨在建立这些资源之间的基本权衡,并设计实现这些资源的有效方案。该项目成果可以帮助设计更快、通信节约、保护隐私和节省空间的学习系统。该项目旨在通过针对本科生和代表性不足的社区的外展活动,让不同的研究人员群体参与到该项目中。研究人员将制定和研究基本的统计推理任务,例如分布估计、假设检验和分布属性在上述信息约束下进行估计。一个特别感兴趣的方向是共享随机性的可用性对分布式机器学习系统的其他约束的影响。虽然随机性在通信复杂性问题中的作用已经被研究,但它在机器学习系统中的作用经常被忽视。该项目将整合计算机科学、信息论、机器学习和统计学的思想,寻求为这些社区的研究人员架起桥梁。该项目的所有研究结果将通过出版物传播,并将在研究者的网站上公开提供。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Estimation for Random Graphs
随机图的鲁棒估计
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, Jayadev;Kamath, Gautam;Jain, Ayush;Suresh, Ananda Theertha;Zhang, Huanyu
  • 通讯作者:
    Zhang, Huanyu
Sample Complexity of Distinguishing Cause from Effect
区分原因和结果的复杂性示例
  • DOI:
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, Jayadev;Bhadane, Sourbh;Bhattacharyya, Arnab;Kandasamy, Saravanan;Sun, Ziteng
  • 通讯作者:
    Sun, Ziteng
Robust Testing and Estimation under Manipulation Attacks
操纵攻击下的鲁棒测试和估计
Distributed estimation with multiple samples per user: Sharp rates and phase transition
每个用户多个样本的分布式估计:夏普速率和相变
Inference Under Information Constraints I: Lower Bounds From Chi-Square Contraction
信息约束下的推理 I:卡方收缩的下界
  • DOI:
    10.1109/tit.2020.3028440
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Acharya, Jayadev;Canonne, Clement L.;Tyagi, Himanshu
  • 通讯作者:
    Tyagi, Himanshu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayadev Acharya其他文献

Sublinear algorithms for outlier detection and generalized closeness testing
用于异常值检测和广义接近度测试的次线性算法
Distributed Simulation and Distributed Inference
分布式仿真和分布式推理
Distributed Signal Detection under Communication Constraints
通信约束下的分布式信号检测
Unified Lower Bounds for Interactive High-dimensional Estimation under Information Constraints
信息约束下交互式高维估计的统一下界
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jayadev Acharya;C. Canonne;Ziteng Sun;Himanshu Tyagi
  • 通讯作者:
    Himanshu Tyagi
Inference Under Information Constraints I: Lower Bounds From Chi-Square Contraction
信息约束下的推理 I:卡方收缩的下界
  • DOI:
    10.1109/tit.2020.3028440
  • 发表时间:
    2018-12-30
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jayadev Acharya;C. Canonne;Himanshu Tyagi
  • 通讯作者:
    Himanshu Tyagi

Jayadev Acharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayadev Acharya', 18)}}的其他基金

CIF: Small: Learning Quantum Information Measures
CIF:小:学习量子信息测量
  • 批准号:
    1815893
  • 财政年份:
    2018
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant
CRII: CIF: Learning with Memory Constraints: Efficient Algorithms and Information Theoretic Lower Bounds
CRII:CIF:记忆约束学习:高效算法和信息论下界
  • 批准号:
    1657471
  • 财政年份:
    2017
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant

相似国自然基金

极大孔径多天线系统基于结构化统计推理的非平稳信道估计和干扰抑制技术
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模演化异质信息网络的未知关系学习与推理研究
  • 批准号:
    61876183
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
面向智能推理的逻辑增强型分布式知识表示研究
  • 批准号:
    61876223
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于统计的类型推理方法研究
  • 批准号:
    61872272
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于逻辑规则和表示学习的知识图谱关系推理方法与应用研究
  • 批准号:
    61772117
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
  • 批准号:
    2338464
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
  • 批准号:
    2239234
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了