CAREER: Scalable and Robust Dynamic Matching Market Design

职业:可扩展且稳健的动态匹配市场设计

基本信息

  • 批准号:
    1846237
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Markets are systems that empower interested parties -- humans, firms, governments, or autonomous agents -- to exchange goods, services, and information. Due to logistical or societal constraints, many markets, e.g., school choice, rideshare, medical residency, advertising, cadaveric organ allocation, online labor, public housing, refugee placement, as well as barter markets such as kidney exchange, cannot rely solely on prices to match supply and demand. This project will develop connections between artificial intelligence (AI) and matching market theory and practice. Specifically, it will create practical methods for the design and analysis of dynamic matching markets operating under various forms of uncertainty, with complex goals, and under objectives that take into account stakeholders' value judgments in a principled way. This research will improve existing systems as well as enable new markets. It will directly address problems in real-world matching systems such as kidney exchange and will lead to improvements in fairness, economic efficiency, and ethical alignment of objectives in fielded kidney allocation systems and other markets. This project will also lay the groundwork for a redesign of the computer science faculty and post-doc job matching market; and it will begin developing principled systems to promote diversity in university admissions, as well as quantitative and technical hiring. Open source software solutions developed as a byproduct of this research will be made available to the public, and results will be communicated with educators.This project will substantially increase the breadth of matching market design, traditionally addressed via microeconomic theory, by developing scalable AI-based methods for designing and analyzing these markets. In turn, matching markets will serve as impetus and inspiration for the development of principled and scalable general optimization-based algorithms for decision making under uncertainty, as well as general AI-based methods for alignment of systems with elicited stakeholder value judgments. The research will make progress in the following three directions:1) Principled approaches to managing short-term uncertainty. Often, decisions must be made before all information about the environment is revealed. This project will take an AI-based approach to decision making under uncertainty; specifically, it will design and create principled methods to learn (at some cost) about the environment that tie into novel methods for computing robust matching policies.2) Learning to balance fairness and efficiency through dynamic matching. Many matching markets are dynamic: participants arrive and depart over time, and relationships between them evolve in predictable ways. Via reinforcement learning and approximate dynamic programming, this project will develop principled and practical ways to learn matching policies that provide both economic efficiency gains alongside fairness and/or diversity-promoting guarantees.3) Alignment with human value judgments. AI-based matching methods require an objective to optimize. Defining that objective involves a feedback loop between human stakeholders---each with their own value judgments---and automated systems. This research will meld techniques for aggregating value judgments of human stakeholders into automated matching and resource allocation systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
市场是授权利益相关方(人类、公司、政府或自主代理人)交换商品、服务和信息的系统。 由于后勤或社会限制,许多市场,例如择校、拼车、住院医师实习、广告、尸体器官分配、在线劳动力、公共住房、难民安置以及肾脏交换等易货市场,不能仅仅依靠价格以匹配供给和需求。 该项目将建立人工智能(AI)与匹配市场理论和实践之间的联系。具体来说,它将创建实用的方法来设计和分析在各种形式的不确定性、复杂目标以及以原则性方式考虑利益相关者价值判断的目标下运行的动态匹配市场。 这项研究将改进现有系统并开拓新市场。 它将直接解决现实世界匹配系统(例如肾脏交换)中的问题,并将改善现场肾脏分配系统和其他市场的公平性、经济效率和目标的道德一致性。 该项目还将为重新设计计算机科学系和博士后工作匹配市场奠定基础;它将开始开发原则性的系统,以促进大学招生以及定量和技术招聘的多样性。 作为这项研究的副产品开发的开源软件解决方案将向公众开放,结果将与教育工作者进行交流。该项目将通过开发可扩展的人工智能,大大增加传统上通过微观经济理论解决的匹配市场设计的广度。设计和分析这些市场的方法。 反过来,匹配市场将成为开发有原则的、可扩展的、基于通用优化的算法(用于不确定性下的决策)的动力和灵感,以及基于人工智能的通用方法,用于将系统与引发的利益相关者价值判断相结合。 研究将在以下三个方向取得进展:1)管理短期不确定性的原则方法。 通常,必须在有关环境的所有信息公开之前做出决定。 该项目将采用基于人工智能的方法在不确定性下做出决策;具体来说,它将设计和创建有原则的方法来(以一定成本)了解环境,这些方法与计算鲁棒匹配策略的新颖方法相结合。2)学习通过动态匹配来平衡公平和效率。 许多匹配市场是动态的:参与者随着时间的推移到达和离开,他们之间的关系以可预测的方式发展。 通过强化学习和近似动态规划,该项目将开发有原则且实用的方法来学习匹配政策,这些政策既提供经济效率收益,又提供公平和/或促进多样性的保证。3) 与人类价值判断保持一致。基于人工智能的匹配方法需要一个优化目标。 定义该目标涉及人类利益相关者(每个人都有自己的价值判断)和自动化系统之间的反馈循环。 这项研究将把人类利益相关者的价值判断整合到自动匹配和资源分配系统中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Revenue-Maximizing Auctions With Differentiable Matching
学习通过可微分匹配实现收入最大化的拍卖
  • DOI:
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael J. Curry;Uro Lyi;T. Goldstein;John P. Dickerson
  • 通讯作者:
    John P. Dickerson
A Pairwise Fair and Community-preserving Approach to k-Center Clustering
k-中心聚类的成对公平和社区保护方法
  • DOI:
  • 发表时间:
    2020-07-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Brubach;D. Chakrabarti;John P. Dickerson;S. Khuller;A. Srinivasan;Leonidas Tsepenekas
  • 通讯作者:
    Leonidas Tsepenekas
Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling
平衡拼车公平性和效率的数据驱动方法
Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks
数据中毒到底有多毒?
  • DOI:
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avi Schwarzschild;Micah Goldblum;Arjun Gupta;John P. Dickerson;T. Goldstein
  • 通讯作者:
    T. Goldstein
How does a Neural Network's Architecture Impact its Robustness to Noisy Labels?
神经网络的架构如何影响其对噪声标签的鲁棒性?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Dickerson其他文献

Spectral characteristics of aging postural control
衰老姿势控制的光谱特征
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. McClenaghan;H. Williams;John Dickerson;M. Dowda;L. Thombs;P. Eleazer
  • 通讯作者:
    P. Eleazer
Fair Polylog-Approximate Low-Cost Hierarchical Clustering
Fair Polylog-近似低成本层次聚类
  • DOI:
    10.48550/arxiv.2311.12501
  • 发表时间:
    2023-11-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marina Knittel;Max Springer;John Dickerson;Mohammadtaghi Hajiaghayi
  • 通讯作者:
    Mohammadtaghi Hajiaghayi
Spectral signature of forces to discriminate perturbations in standing posture.
用于区分站立姿势扰动的力的光谱特征。
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    B. McClenaghan;Harriet G. Williams;John Dickerson;Lori A. Thombs
  • 通讯作者:
    Lori A. Thombs
Percutaneous retrogasserian glycerol rhizolysis for treatment of chronic intractable cluster headaches: long-term results.
经皮后甘油根溶解术治疗慢性顽固性丛集性头痛:长期结果。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Daniel R. Pieper;John Dickerson;Samuel J. Hassenbusch
  • 通讯作者:
    Samuel J. Hassenbusch
M ANGO : Enhancing the Robustness of VQA Models via Adversarial Noise Generation
MANGO:通过对抗性噪声生成增强 VQA 模型的鲁棒性
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zhe Gan;Yen;Linjie Li;Chenguang Zhu;Zhicheng Huang;Zhaoyang Zeng;Bei Yupan Huang;Dongmei Liu;Jianlong Fu;Fu. 2021;Seeing;Bei Liu;Dongmei Fu;Yu Jiang;Vivek Natarajan;Xinlei Chen;Kezhi Kong;Guohao Li;Mucong Ding;Zuxuan Wu;Liunian Harold;Mark Li;Da Yatskar;Cho;Hsieh Kai;Chang;Haoxuan Li;Zhecan You;Alireza Wang;Shih;Kai;Xiujun Li;Xi Yin;Chunyuan Li;Xiaowei Hu;Jiasen Lu;Vedanuj Goswami;Marcus Rohrbach;Aleks;er Mądry;er;Aleks;ar Makelov;ar;Ludwig;Dimitris Schmidt;Tsipras Adrian;Vladu;Myle Ott;Sergey Edunov;David Grangier;Dong Huk Park;Trevor Darrell;Arijit Ray;Karan Sikka;Ajay Divakaran;Stefan Lee;E. Rusak;Lukas Schott;Rol;S. Zimmer;Julian Bitterwolf;Oliver Bringmann;Bethge Wiel;Brendel. 2020;Ramprasaath R. Selvaraju;Purva Tendulkar;Devi Parikh;Eric Horvitz;Marco Ribeiro;Besmira Nushi;Ali Shafahi;Mahyar Najibi;Mohammad Amin;Ghi;Zheng Xu;John Dickerson;Christoph Studer;M. Shah
  • 通讯作者:
    M. Shah

John Dickerson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Dickerson', 18)}}的其他基金

SBIR Phase I: Advertising Sales and Traffic Optimization: Difficult Customer-Requested Optimization Constraints and Scalability on Real Data
SBIR 第一阶段:广告销售和流量优化:客户要求的困难的优化约束和真实数据的可扩展性
  • 批准号:
    1345567
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Stability of Parametrically Excited Partial Differential Equations
参数激励偏微分方程的稳定性
  • 批准号:
    7522859
  • 财政年份:
    1975
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具备可扩展性与隐私保障的数据驱动分布式优化方法及其在需求响应中的应用
  • 批准号:
    72301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Towards Scalable and Robust Inference of Phylogenetic Networks
职业:走向可扩展和稳健的系统发育网络推理
  • 批准号:
    2144367
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Combinatorial Structures for Robust and Scalable Learning
职业:利用组合结构实现稳健且可扩展的学习
  • 批准号:
    1845032
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Robust and scalable genome-wide phylogenetics
职业:稳健且可扩展的全基因组系统发育学
  • 批准号:
    1845967
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Robust, scalable, reliable machine learning
职业:稳健、可扩展、可靠的机器学习
  • 批准号:
    1750286
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了