QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
基本信息
- 批准号:EP/W006685/1
- 负责人:
- 金额:$ 109.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a promising solid state architecture that could be extended to build a quantum information processor. We focus on a well understood system, the NV-defect centre in diamond. This centre has a ground state spin that is well coupled to photons such that arrays of spins coupled by low loss waveguides can be envisaged. However the solid state brings increased decoherence and spectral non-uniformity compared to atomic systems. It also brings the prospect of building spin and photonic interfaces at scale, using nanofabrication. Here we aim to individually address solid-state emitters control their spin and make them spectrally indistinguishable thus ensuring high fidelity spin quantum bits linked by waveguides on a chip. While most of the focus of the solid-state quantum photonics community has been devoted to finding an ideal solid-state emitter that exhibits atom-like properties, relatively little effort has been spent on figuring out how one can build complex opto-electronic systems around them enabling precise optical and spin control. This is especially important, given that traditional top-down semiconductor manufacturing methods cannot be directly applied to such bottom-up systems. Since a fully error corrected quantum computer will need O(1E6) qubits and even near-term noisy intermediate scale quantum (NISQ) devices need O(1E2) to demonstrate computational quantum supremacy, there is an urgent need to establish that bottom up systems employing solid state emitters can be scaled up to be competitive with top-down fabricated systems (such as those employed for linear optics and superconducting circuits). The NV- centre provides a room-temperature quantum system with optical and spin degrees of freedom that can be accessed and manipulated and this room temperature readout makes the NV- centre attractive for rapid iteration and prototyping of devices, both in the electrical and optical domain. In addition, the ready availability of high coherence NV- centres in nanodiamond form allows us to directly implement bottom-up manufacturing methods, originally developed in the bio-chemistry domain, such as precision localisation and templated self-assembly to solid state quantum optics.
该项目研究了一种有希望的固态体系结构,可以扩展以构建量子信息处理器。我们专注于钻石的NV缺失中心良好的系统。该中心的基态旋转与光子很好,因此可以设想通过低损耗波导的旋转阵列。然而,与原子系统相比,固态使变质和光谱不均匀增加。它还使用纳米制作使旋转和光子界面构建旋转和光子接口的前景。在这里,我们的目标是单独解决固态发射器控制其旋转,并使它们在频谱上无法区分,从而确保了由芯片上的波导链接的高富达自旋量子位。虽然固态量子光子学界的大多数重点都致力于找到具有原子样性能的理想固态发射极,但花费相对较少的努力来弄清楚如何构建围绕它们的复杂的光电系统实现精确的光学和旋转控制。鉴于传统的自上而下的半导体制造方法不能直接应用于此类自下而上的系统,这一点尤其重要。由于完全校正的量子计算机将需要O(1E6)量子计算机,甚至近期嘈杂的中间量表量子(NISQ)设备需要O(1E2)来证明计算量子量表至高无上,因此迫切需要建立底层上UP Systems的固定系统的底层型号可以缩放到具有竞争力的系统中(例如,这些循环范围都可以使用该系统(例如那些均可使用的循环)和强制性的循环。 NV-中心提供了一个具有光学和自旋自由度的室温量子系统,可以访问和操纵,并且该室温读数使NV-中心具有在电气和光学域中的快速迭代和原型设备的吸引力。此外,纳米座形式的高相干性NV中心的现成可用性使我们能够直接实施最初在生物化学领域中开发的自下而上的制造方法,例如精确定位和模板自组装以固态量子量子量子。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors.
- DOI:10.1002/advs.202304449
- 发表时间:2024-01
- 期刊:
- 影响因子:15.1
- 作者:Smith, Joe A.;Zhang, Dandan;Balram, Krishna C.
- 通讯作者:Balram, Krishna C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Coimbatore Balram其他文献
Krishna Coimbatore Balram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Coimbatore Balram', 18)}}的其他基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Next generation Acoustic Wave Filter Platform
下一代声波滤波器平台
- 批准号:
EP/W035359/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
- 批准号:
EP/V005286/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
GASP: Gallium Arsenide (III-V) photonic integrated circuits built like Silicon Photonics
GASP:砷化镓 (III-V) 光子集成电路,类似于硅光子学
- 批准号:
EP/V052179/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
- 批准号:
EP/V048856/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
相似国自然基金
噪声环境下的大规模变分量子优化关键技术研究
- 批准号:62302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
规模化超导量子芯片的研制
- 批准号:92365206
- 批准年份:2023
- 资助金额:320.00 万元
- 项目类别:重大研究计划项目
用于规模化量子芯片的超导量子耦合器研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模混合集成三维高速光量子信息处理芯片
- 批准号:62235012
- 批准年份:2022
- 资助金额:289 万元
- 项目类别:重点项目
密码分析量子算法的电路规模优化研究
- 批准号:62272056
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
- 批准号:
2421059 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Continuing Grant
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
- 批准号:
23K03383 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
- 批准号:
EP/X021963/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Fellowship