CAREER: Quantum Computing - Trapped ion QPU with integrated photonics

职业:量子计算 - 具有集成光子学的俘获离子 QPU

基本信息

  • 批准号:
    2338369
  • 负责人:
  • 金额:
    $ 62.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Trapped ions are a critical approach for quantum computing, precision sensing, timekeeping, and the study of fundamental physics. To realize operational quantum advantage for computing, and to improve precision for sensing, timekeeping, and fundamental physics measurements, the number of trapped ions in these systems must be scaled up. Yet, this would require laboratories full of sensitive, complex equipment, limiting their portability, scalability, and accessibility to broader communities. The PI proposes a transformational approach that converges trapped ion quantum research with integrated photonics research to solve these problems and demonstrate their application to quantum and fundamental physics problems. This research will transform the stability of these systems and advance the state-of-the-art performance, resulting in trapped ion physics experiments that are more reliable and accessible, and allow these technologies to propagate to new fields of research and applications. This convergence research will be augmented with development of multiple hardware, integration, and software open-source tools to enable customized trapped ion physics experiments, so they are accessible to broader audiences and applications. The PI is also developing interactive educational physics tutorials which will incorporate this research into the classroom to advance the broader understanding of quantum physics and technologies.This project will develop a new trapped ion integrated platform co-designed with integrated photonics which will have versatile applications for quantum computing, quantum sensing, trapped ion optical clocks and fundamental physics measurements. To achieve high fidelity qubit operations, the project will investigate new nanofabrication techniques, rapid packaging, and co-design of ion traps with new integrated photonics to utilize atomic transitions more resilient to errors. To scale the platform, the project will work on miniaturizing not just the optical delivery with photonic grating couplers but also the optical stabilization and control through monolithic integration of advanced photonics within the trapped ion processor itself. For trapped ion optical clocks, eliminating phase instability between the laser reference and the trapped ion though monolithic integration would enable portable operation resilient to vibration. This resilience also improves the reliability of trapped ion systems, removing operational overhead and complexity, thus making them easier to scale and more accessible to applications outside the laboratory. To foster broader adoption of these technologies the project will develop multiple open-source tools, including process design kits, ion trap surface simulation, and modular optical layout libraries. Altogether, the development of a new integrated trapped ion platform co-designed with integrated photonics will improve their performance, portability, and scalability with transformative impacts on quantum computing, sensing, timekeeping, and measurements of fundamental physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
捕获的离子是量子计算,精度感测,定时处理和基本物理学研究的关键方法。为了实现计算的操作量子优势,并提高了传感,定时和基本物理测量的精度,必须扩大这些系统中被困离子的数量。然而,这将需要充满敏感,复杂设备的实验室,限制其对更广泛社区的可​​移植性,可伸缩性和可访问性。 PI提出了一种转化方法,该方法将捕获的离子量子研究与集成光子学研究融合,以解决这些问题并证明它们在量子和基本物理问题上的应用。这项研究将改变这些系统的稳定性并提高最先进的性能,从而产生被困的离子物理实验,这些实验更可靠,可访问,并允许这些技术传播到研究和应用的新领域。通过开发多个硬件,集成和软件开源工具,可以增强这种融合研究,以实现自定义的捕获离子物理实验,因此更广泛的受众和应用程序可以访问它们。 PI还正在开发交互式教育物理教程,该教程将将这项研究纳入课堂上,以提高对量子物理和技术的更广泛的了解。本项目将开发一个新的被包装的离子集成平台,并与集成的光子学共同设计,该平台将与量子计算,量子传感,量子感应,量子式iOn optical Clove and trapping Ion optical corlacts and cuttresticts and Intersicts andictalssicts andiricts corlticts and cuthertants sottalsicts anderticals cortitalssicts andirictals corpturalssicts和基金会。为了实现高保真量子的操作,该项目将研究新的纳米型制造技术,快速包装以及与新的集成光子学的离子陷阱的共同设计,以利用原子过渡对误差更具弹性。为了扩展平台,该项目将不仅可以通过光子光子耦合器的光学传递来微型化,而且还可以通过在捕获的离子处理器本身内的高级光子学整合整合进行光学稳定和控制。对于被困的离子光学时钟,消除激光参考和被困离子之间的相位不稳定性,尽管整体上的整合将使便携式操作能够弹性,从而使振动具有弹性。这种弹性还提高了被困的离子系统的可靠性,消除了操作的开销和复杂性,从而使它们更易于扩展,并且可以更易于实验室外的应用程序访问。为了促进这些技术的更广泛采用,该项目将开发多种开源工具,包括流程设计套件,离子陷阱表面仿真和模块化光学布局库。总而言之,与集成光子学共同设计的新的集成陷阱平台的开发将改善其性能,可移植性和可伸缩性,并对量子计算,感应,定时处理以及基本物理学的测量结果进行变革性影响。该奖项反映了NSF的法定任务,并通过评估基金会的范围来反映出支持符合基金会的支持,并已被认为是基础的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Niffenegger其他文献

Robert Niffenegger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于量子化学计算构建的荧光传感器阵列对西红花快速鉴定新方法的研究
  • 批准号:
    82374000
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于量子计算的高效特征提取算法研究
  • 批准号:
    62371069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向量子计算应用的SOI-FinFET器件低温机理及模型研究
  • 批准号:
    62374174
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
复杂大电网可靠性评估的量子计算理论及应用
  • 批准号:
    52377089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
抗噪声量子计算的物理实现研究
  • 批准号:
    12305021
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Second Generation Qubits -- the future of superconducting quantum computing
职业:第二代量子位——超导量子计算的未来
  • 批准号:
    2240129
  • 财政年份:
    2023
  • 资助金额:
    $ 62.42万
  • 项目类别:
    Continuing Grant
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 62.42万
  • 项目类别:
CAREER: Data-Centric Evolutionary Contagion Models with Parallel and Quantum Parallel Computing
职业:具有并行和量子并行计算的以数据为中心的进化传染模型
  • 批准号:
    2236854
  • 财政年份:
    2023
  • 资助金额:
    $ 62.42万
  • 项目类别:
    Continuing Grant
CAREER:Charting the Quantum Computing Landscape for Process Control
职业:绘制过程控制的量子计算前景
  • 批准号:
    2143469
  • 财政年份:
    2022
  • 资助金额:
    $ 62.42万
  • 项目类别:
    Continuing Grant
CAREER: Uncertainty Quantification for Quantum Computing Algorithms
职业:量子计算算法的不确定性量化
  • 批准号:
    2143915
  • 财政年份:
    2022
  • 资助金额:
    $ 62.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了