CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
基本信息
- 批准号:1845962
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal develops a computational framework that helps the domain scientists who employ advanced cyberinfrastructure ecosystem (e.g., for engineering, manufacturing, healthcare, etc.) to realistically and efficiently reconstruct, visualize, and analyze 3D and 4D (space-time) volumetric objects with complex geometric structures and highly anisotropic properties (such properties are characterized by the presence of specified orientations and aspect ratios in the system). For example, in mechanical engineering, it is necessary to interactively design and model mechanical parts with user-required high-quality measures and standards. The computational framework enables fabrication of such mechanical parts with specified microstructure that can be efficiently produced to sustain much stronger stress and strain compared with those without endowing such properties, which leads to significant impact on the next-generation mechanical component design. As an integral part of the PI's career development, the educational plan emphasizes on the integration of education and research in different aspects through the PI's new "3D hands-on" education philosophy for K-12, undergraduate and graduate students. This project thus serves the national interest, as stated by NSF's mission: to promote the progress of science; to advance the national health, prosperity and welfare. The research goal of this project focuses on a computational framework for anisotropic volumetric meshing, a foundational as well as translational research impacting a broad range of scientific domains. The capability and usability of the meshing framework are evaluated by investigating fabrication of objects with internal microstructures and construction of anisotropic volumetric models to capture the organ and tissue shape. This work has the following primary components: (1) Computing high-dimensional geometric embedding based on Nash theorem in parallel: the computational realization of high-dimensional geometric embedding makes modeling complex objects with multiple tensor features being built and solved in parallel in a large linear system. (2) Modeling multi-shape of mesh element in a unified particle framework: the particle system flexibly and effectively generates high-quality honeycomb, tetrahedral, and hexahedral (grid) patterns, which are exactly designed for meshing structure. The optimization procedure is easily formulated for parallelism in the high-dimensional space. (3) Generating 3D/4D anisotropic mesh in parallel: the final multi-shape anisotropic meshes are computed in parallel in the high-dimensional space with simple Euclidean computations under the isotropic metric. The primary outcome of this project is a 3D/4D-ParaAnisoMesh system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案开发了一个计算框架,帮助采用先进网络基础设施生态系统(例如,用于工程、制造、医疗保健等)的领域科学家通过以下方法真实有效地重建、可视化和分析 3D 和 4D(时空)体积对象:复杂的几何结构和高度各向异性的特性(这些特性的特征是系统中存在指定的方向和纵横比)。例如,在机械工程中,需要按照用户要求的高质量措施和标准对机械零件进行交互式设计和建模。该计算框架能够制造具有特定微观结构的机械零件,与不具有这种特性的机械零件相比,这些机械零件可以有效地生产以承受更强的应力和应变,这对下一代机械零件设计产生重大影响。作为PI职业发展的重要组成部分,该教育计划强调通过PI针对K-12、本科生和研究生的全新“3D动手”教育理念,强调教育与研究在不同方面的融合。因此,该项目符合国家利益,正如 NSF 的使命所言:促进科学进步;促进国民健康、繁荣和福利。该项目的研究目标侧重于各向异性体积网格划分的计算框架,这是影响广泛科学领域的基础研究和转化研究。 通过研究具有内部微观结构的物体的制造以及捕获器官和组织形状的各向异性体积模型的构建来评估网格框架的功能和可用性。这项工作有以下主要组成部分:(1)基于纳什定理的并行计算高维几何嵌入:高维几何嵌入的计算实现使得对具有多个张量特征的复杂对象进行建模并在大范围内并行构建和求解线性系统。 (2)在统一的粒子框架中对多种形状的网格单元进行建模:粒子系统灵活有效地生成高质量的蜂窝状、四面体和六面体(网格)图案,这些图案正是为网格结构而设计的。优化过程很容易制定用于高维空间中的并行性。 (3)并行生成3D/4D各向异性网格:在各向同性度量下通过简单的欧几里德计算在高维空间中并行计算最终的多形状各向异性网格。该项目的主要成果是 3D/4D-ParaAnisoMesh 系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network
DeepOrganNet:通过深度变形网络从单视图投影实时重建和可视化 3D / 4D 肺模型
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:5.2
- 作者:Wang, Yifan;Zhong, Zichun;Hua, Jing
- 通讯作者:Hua, Jing
VC-Net: Deep Volume-Composition Networks for Segmentation and Visualization of Highly Sparse and Noisy Image Data
VC-Net:用于高度稀疏和噪声图像数据的分割和可视化的深度体合成网络
- DOI:10.1109/tvcg.2020.3030374
- 发表时间:2021-01
- 期刊:
- 影响因子:5.2
- 作者:Wang, Yifan;Yan, Guoli;Zhu, Haikuan;Buch, Sagar;Wang, Ying;Haacke, Ewart Mark;Hua, Jing;Zhong, Zichun
- 通讯作者:Zhong, Zichun
DiffSVR: Differentiable Neural Implicit Surface Rendering for Single-View Reconstruction with Highly Sparse Depth Prior
DiffSVR:用于具有高度稀疏深度先验的单视图重建的可微神经隐式表面渲染
- DOI:10.1016/j.cad.2023.103604
- 发表时间:2023-08-01
- 期刊:
- 影响因子:0
- 作者:Artem Komarichev;Jing Hua;Z. Zhong
- 通讯作者:Z. Zhong
Multi-Derivative Physical and Geometric Convolutional Embedding Networks for Skeleton-based Action Recognition
用于基于骨架的动作识别的多导数物理和几何卷积嵌入网络
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:1.5
- 作者:Yan, Guoli;Hua, Michelle;Zhong, Zichun
- 通讯作者:Zhong, Zichun
JointFontGAN: Joint Geometry-Content GAN for Font Generation via Few-Shot Learning
JointFontGAN:通过少样本学习生成字体的联合几何内容 GAN
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Xi, Yankun;Yan, Guoli;Hua, Jing;Zhong, Zichun
- 通讯作者:Zhong, Zichun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zichun Zhong其他文献
Computer Aided Geometric Design
计算机辅助几何设计
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Artem Komarichev;Jing Hua;Zichun Zhong - 通讯作者:
Zichun Zhong
ROSE: Multi-level super-resolution-oriented semantic embedding for 3D microvasculature segmentation from low-resolution images
ROSE:面向低分辨率图像的 3D 微血管分割的多级超分辨率语义嵌入
- DOI:
10.1016/j.neucom.2024.128038 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:6
- 作者:
Yifan Wang;Haikuan Zhu;Hongbo Li;Guoli Yan;S. Buch;Ying Wang;E. Haacke;Jing Hua;Zichun Zhong - 通讯作者:
Zichun Zhong
TCB-Spline-Based Image Vectorization
基于 TCB 样条的图像矢量化
- DOI:
10.1145/3513132 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Haikuan Zhu;Juan Cao;Yanyang Xiao;Zhonggui Chen;Zichun Zhong;Yongjie Jessica Zhang - 通讯作者:
Yongjie Jessica Zhang
Clinical Investigation : Thoracic Cancer A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data
临床研究:胸癌一种基于传统锥束 CT 投影数据评估每日肺部肿瘤运动的新型无标记技术
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yin Yang;Zichun Zhong;Xiaohu Guo;Jing Wang;John Anderson;Timothy Solberg;Weihua Mao - 通讯作者:
Weihua Mao
Computer-Aided Design
计算机辅助设计
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Artem Komarichev;Jing Hua;Zichun Zhong - 通讯作者:
Zichun Zhong
Zichun Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zichun Zhong', 18)}}的其他基金
Elements: MVP: Open-Source AI-Powered MicroVessel Processor for Next-Generation Vascular Imaging Data
要素:MVP:用于下一代血管成像数据的开源人工智能微血管处理器
- 批准号:
2311245 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: Small: Shape-Image-Text: A Data-Driven Joint Embedding Framework for Representing and Analyzing Large-Scale Brain Microvascular Data
OAC 核心:小型:形状-图像-文本:用于表示和分析大规模脑微血管数据的数据驱动的联合嵌入框架
- 批准号:
1910469 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CHS: Small: High-Dimensional Euclidean Embedding for 4D Volumetric Shape with Multi-Tensor Fields
CHS:小型:具有多张量场的 4D 体积形状的高维欧几里得嵌入
- 批准号:
1816511 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: ACI: 4D Dynamic Anisotropic Meshing and Applications
CRII:ACI:4D 动态各向异性网格划分和应用
- 批准号:
1657364 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Large-Scale Distributed Learning of Noisy Labels for Images and Video
EAGER:图像和视频噪声标签的大规模分布式学习
- 批准号:
1554264 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Magnetic Cogging Parallel-elastic Actuators for Energy-efficient Robotic Legs
用于节能机器人腿的磁力齿槽平行弹性执行器
- 批准号:
2147765 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CELL EXPANSION BIOREACTORS FOR ASSAY-READY IMMUNOCOMPETENT PATIENT MODELS
用于检测准备的免疫功能正常患者模型的细胞扩增生物反应器
- 批准号:
10688981 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Data-Parallel Algorithms for Efficient Query Processing on Modern Hardware
现代硬件上高效查询处理的数据并行算法
- 批准号:
RGPIN-2020-06639 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Efficient Two-Photon Voltage Imaging of Neuronal Populations at Behavioral Timescales
行为时间尺度神经元群的高效双光子电压成像
- 批准号:
10516906 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别: