Efficient Two-Photon Voltage Imaging of Neuronal Populations at Behavioral Timescales
行为时间尺度神经元群的高效双光子电压成像
基本信息
- 批准号:10516906
- 负责人:
- 金额:$ 133.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlgorithmsAnatomyAnimal BehaviorBehaviorBehavioralBiosensorBrainBrain DiseasesBudgetsCalciumCommunicationCrystallizationDataDetectionDevelopmentElectrophysiology (science)EngineeringEnsureFiberFinancial compensationFluorescenceGenerationsGoalsHot SpotHybridsImageImage AnalysisLabelLasersLearningLengthLightMammalian CellMeasurementMeasuresMethodsMicroscopeMolecularMonitorMotionMusMutagenesisNeocortexNeuronsNeurosciencesNoiseOpsinOptical MethodsOpticsOrthologous GenePhotobleachingPhotonsPhysiologic pulsePlayPopulationProcessPropertyProtein EngineeringReportingResearch PersonnelResolutionRiskScanningScientistSignal TransductionSolidSomatosensory CortexSpeedSupervisionSystemSystems AnalysisTechniquesTestingTimeTissuesVariantadaptive opticsanalysis pipelinebasecost effectivedeep learningdenoisingdesignexperimental studyflexibilitygenetic informationimprovedin vivoin vivo imaginginstrumentationlight scatteringmultiplexed imagingmutantneuronal cell bodyneuronal circuitrynew technologynovelparallel computerpatch clampphotonicsscreeningsensorspatiotemporaltooltwo-photonvoltage
项目摘要
PROJECT SUMMARY
Understanding how information is processed in the mammalian neocortex has been a longstanding
question in neuroscience. While the action potential is the fundamental bit of information, how these
spikes encode representations and drive behavior remains unclear. In order to adequately address this
problem, it has become apparent that experiments are needed in which activity from large numbers of
neurons can be measured in a detailed and comprehensive manner across multiple timescales. Direct
measurements of action potentials have primarily been achieved by electrophysiology. However, such
measurements cannot easily be combined with other methods to assess the connectivity and molecular
properties of neurons. Integrating functional, anatomical, and genetic information is critical for
understanding how neuronal circuits are organized and computed. There have been long-standing efforts
in developing optical methods for measuring neuronal activity due to its compatibility to simultaneously
measure connectivity and molecular identity using fluorescent labeling techniques. We have developed a
two-photon-excitable genetically-encoded voltage-sensitive indicator and ultra-fast two-photon microscope
that enables optical measurements of action potentials deep into the brain. However, imaging at high
signal-to-noise beyond several minutes remains challenging due to photo-bleaching and risks of photo-
damage. In order for these new technologies to become more robust for neuroscience applications, it is
necessary to improve upon the stability, reliability, and efficiency of two-photon voltage imaging. To
achieve this, it requires a concerted effort between optical engineers, protein engineers, and
computational scientists to optimize instrumentation, sensors, and image analysis for broad
dissemination. This multi-investigator effort proposes to advance two-photon voltage imaging to enable
sustained tracking of population activity at timescales of animal behavior and learning.
项目概要
了解哺乳动物新皮层如何处理信息一直是一个长期的问题
神经科学中的问题。虽然动作电位是信息的基本位,但这些信息如何
尖峰编码表征和驱动行为仍不清楚。为了充分解决这个问题
问题,很明显,需要进行实验,其中来自大量的活动
可以在多个时间尺度上以详细而全面的方式测量神经元。直接的
动作电位的测量主要通过电生理学来实现。然而,这样的
测量不能轻易地与其他方法结合来评估连通性和分子
神经元的特性。整合功能、解剖和遗传信息对于
了解神经元回路是如何组织和计算的。已经有长期的努力
开发用于测量神经元活动的光学方法,因为它同时兼容
使用荧光标记技术测量连接性和分子身份。我们开发了一个
双光子激发基因编码电压敏感指示器和超快双光子显微镜
这使得能够对大脑深处的动作电位进行光学测量。然而,在高成像
由于光漂白和光漂白的风险,超过几分钟的信噪比仍然具有挑战性。
损害。为了使这些新技术在神经科学应用中变得更加强大,需要
提高双光子电压成像的稳定性、可靠性和效率是必要的。到
要实现这一目标,需要光学工程师、蛋白质工程师和
计算科学家优化仪器、传感器和图像分析以实现广泛的应用
传播。这项多位研究人员的努力建议推进双光子电压成像,以实现
在动物行为和学习的时间尺度上持续跟踪种群活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry L Chen其他文献
Physiologic and Pharmacologic Factors Influencing Glyceroneogenic Contribution to Triacylglyceride Glycerol Measured by Mass Isotopomer Distribution Analysis*
通过质量同位素异构体分布分析测量影响甘油三酯甘油生成贡献的生理和药理学因素*
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:4.8
- 作者:
Jerry L Chen;E. Peacock;W. Samady;S. Turner;R. Neese;M. Hellerstein;E. Murphy - 通讯作者:
E. Murphy
Jerry L Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry L Chen', 18)}}的其他基金
Cortical Interactions Underlying Sensory Representations
感官表征下的皮质相互作用
- 批准号:
9789710 - 财政年份:2018
- 资助金额:
$ 133.67万 - 项目类别:
Cracking Genetically Defined Neocortical Circuits across Learning and Behavior
破解学习和行为中基因定义的新皮质回路
- 批准号:
10561327 - 财政年份:2018
- 资助金额:
$ 133.67万 - 项目类别:
Cortical Interactions Underlying Sensory Representations
感官表征下的皮质相互作用
- 批准号:
10215633 - 财政年份:2018
- 资助金额:
$ 133.67万 - 项目类别:
Cortical Interactions Underlying Sensory Representations
感官表征下的皮质相互作用
- 批准号:
10438601 - 财政年份:2018
- 资助金额:
$ 133.67万 - 项目类别:
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 133.67万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 133.67万 - 项目类别:
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
- 批准号:
10557004 - 财政年份:2022
- 资助金额:
$ 133.67万 - 项目类别:
Dissecting circuit and cellular mechanisms for limb motor control
剖析肢体运动控制的电路和细胞机制
- 批准号:
10522108 - 财政年份:2022
- 资助金额:
$ 133.67万 - 项目类别:
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
- 批准号:
10706618 - 财政年份:2022
- 资助金额:
$ 133.67万 - 项目类别: