Active colloids with tunable interactions in liquid crystals
液晶中具有可调节相互作用的活性胶体
基本信息
- 批准号:1905053
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical abstract:Mankind is increasingly dependent on technologies of transportation. Over centuries, the thrust has been on development of macroscopic devices such as cars, planes, ships that are larger than the human beings. The new challenge is to develop miniature systems that could rectify the energy of environment into directed motion at the scale of micrometers. In the future, these micromachines are expected to interact with biological tissues and individual cells, serve as elementary units of soft microrobots, deliver microscopic quantities of drugs or other useful chemicals, work as energy harvesters, responsive actuators, microscale mixers and separators. Electric field is considered as one of the most effective means in powering the transport of matter at microscale. Most of the studies of microdynamics are performed for an isotropic environment, such as water, which does not provide a clear sense of direction for electrically powered microsystems. The goal of the project is to learn how one can control dynamics of microparticles by anisotropic fluids, with properties that depend on the direction in space. These fluids are known as liquid crystals. Anisotropy of liquid crystals under the action of the electric field is already used in informational displays of modern computers, smartphones and TV sets. The project will explore how to use liquid crystals as a medium that enables and commands dynamics and interactions of microparticles. The project will advance the knowledge of mechanisms defining dynamics of soft matter at microscopic scales and potentially contribute to the technologies of future micromachines. Technical abstract:Collective out-of-equilibrium spatiotemporal dynamics of microscopic particles in the so-called active matter is a fascinating area of intense studies. Depending on the type of interactions, active matter develops various scenarios of behavior, from coordinated collective unidirectional motion to turbulent-like flows. The project will explore how the electric field controls dynamics of colloidal particles and their interactions at microscale, using methods such as optical microscopy, confocal microscopy and particle velocimetry. The project will answer a question whether and how the seemingly chaotic dynamics of active matter can be controlled by an ordered environment of a liquid crystal. The potential transformative value is in understanding the mechanisms by which the orientational order can command interactions and collective motion in ensembles of electrically powered active particles. The orientational order of the proposed LC environment imposes long-range anisotropic elastic and hydrodynamic interactions and propulsion modes that are absent in isotropic fluids. The project will advance the knowledge of electro-hydrodynamics of LCs and colloids, physics of out-of-equilibrium active matter. Application of already tested methods such as three-dimensional confocal microscopy, particle imaging velocimetry, patterned photo-alignment and electro-optics will ensure that the new knowledge is based on a solid experimental background. The project will provide a new platform to design and control ensembles of active particles, which has the potential for enormous societal benefits in areas ranging from existing technologies (such as improved electrophoretic displays) to the technologies of the future, which would exploit the unique ability of active colloids to transduce energy from the environment into systematic movement, to control the flow of matter, to serve as important elements of micromachines. The project will educate a new and diverse generation of scientists with fundamental and technological expertise in soft and active matter.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:人类越来越依赖运输技术。几个世纪以来,这种推力一直在开发宏观设备,例如汽车,飞机,船只,比人类大。新的挑战是开发可以将环境能量纠正为微米的定向运动的微型系统。将来,这些微机器有望与生物组织和单个细胞相互作用,作为软微型机器人的基本单位,提供微观量的药物或其他有用的化学物质,可作为能量收割机,响应式执行器,微观搅拌器和分离器。电场被认为是在微观上为物质运输供电的最有效手段之一。 大多数对微动力学的研究都是针对各向同性环境(例如水)进行的,该研究并不能为电力微型系统提供明显的方向感。 该项目的目的是学习如何通过各向异性流体来控制微粒动力学,其特性取决于空间的方向。这些流体称为液晶。 电场作用下液晶的各向异性已经用于现代计算机,智能手机和电视机的信息显示。该项目将探索如何使用液晶作为启用和命令微粒动力和相互作用的介质。该项目将促进在微观尺度上定义软物质动力学的机制的知识,并有可能有助于未来的微机械技术。 技术摘要:所谓的活性物质中微观颗粒的集体外部时空动力学是一个令人着迷的深入研究领域。根据相互作用的类型,主动物质会发展出各种行为的情况,从协调的集体单向运动到湍流样流。 该项目将使用光学显微镜,共聚焦显微镜和粒子速度计等方法探讨电场如何控制胶体颗粒及其相互作用的动力学及其相互作用。该项目将回答一个问题,是否以及如何通过液晶的有序环境控制活跃物质的看似混乱的动力学。 潜在的变革价值在于理解方向秩序可以在电力活性颗粒的集合中命令相互作用和集体运动的机制。所提出的LC环境的方向顺序施加了各向同性流体中不存在的远距离各向异性弹性和流体动力相互作用和推进模式。该项目将促进LCS和胶体的电融化动力学知识,即非平衡活性物质的物理学。 已经测试过的方法的应用,例如三维共聚焦显微镜,粒子成像速度计,图案化的光相位和电镜,将确保新知识基于坚实的实验背景。该项目将提供一个新的平台来设计和控制主动颗粒的团结,该平台有可能在现有技术(例如改善的电泳展示)到未来技术的领域获得巨大的社会利益,这将利用活性胶体的独特能力从环境转移到系统的运动中,以控制Materach的元素,从而将环境从环境转移到系统流动中,并能够将其转换为Internocar的流动。 该项目将教育一系列新的科学家,具有软体和主动物质方面的基本和技术专业知识。该奖项反映了NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ferroelectric nematic liquid crystal, a century in waiting
- DOI:10.1073/pnas.2008947117
- 发表时间:2020-06-30
- 期刊:
- 影响因子:11.1
- 作者:Lavrentovich, Oleg D.
- 通讯作者:Lavrentovich, Oleg D.
Defects in bent-core liquid crystals
弯芯液晶的缺陷
- DOI:10.1080/21680396.2022.2086932
- 发表时间:2022
- 期刊:
- 影响因子:5.1
- 作者:Jákli, Antal;Nastishin, Yuriy;Lavrentovich, Oleg D.
- 通讯作者:Lavrentovich, Oleg D.
Soliton-induced liquid crystal enabled electrophoresis
孤子诱导液晶电泳
- DOI:10.1103/physrevresearch.2.013178
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Li, Bing-Xiang;Xiao, Rui-Lin;Shiyanovskii, Sergij V.;Lavrentovich, Oleg D.
- 通讯作者:Lavrentovich, Oleg D.
Designing, generating and reconfiguring disclination interconnects in nematic liquid crystals
设计、生成和重新配置向列液晶中的向错互连
- DOI:10.1080/02678292.2023.2208551
- 发表时间:2023
- 期刊:
- 影响因子:2.2
- 作者:Jiang, Miao;Guo, Yubing;Selinger, Robin L;Lavrentovich, Oleg D;Wei, Qi-Huo
- 通讯作者:Wei, Qi-Huo
Dynamic Control of Speed and Trajectories of Active Droplets in a Nematic Environment by Electric Field and Focused Laser Beam
通过电场和聚焦激光束动态控制向列环境中活性液滴的速度和轨迹
- DOI:10.3389/fphy.2021.752994
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Rajabi, Mojtaba;Baza, Hend;Wang, Hao;Lavrentovich, Oleg D.
- 通讯作者:Lavrentovich, Oleg D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Lavrentovich其他文献
Oleg Lavrentovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Lavrentovich', 18)}}的其他基金
Collaborative Research: Highly ordered concentric multilayer nanostructures with probable liquid crystalline features from rigid sphere-rod amphiphiles in solution
合作研究:溶液中刚性球棒两亲物具有可能液晶特征的高度有序同心多层纳米结构
- 批准号:
2215191 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Electro-optical phase retarders based on newly discovered nematics
基于新发现的向列相的电光相位延迟器
- 批准号:
2122399 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Collaborative Research: Morphogenesis of First-Order Phase Transitions in Polar and Apolar Nematic Liquid Crystals
合作研究:极性和非极性向列液晶中一级相变的形态发生
- 批准号:
2106675 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Electrically tunable cholesteric optical filters
电可调胆甾型滤光片
- 批准号:
1906104 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
- 批准号:
1729509 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Dielectric Photomasks for Nanopatterning Arbitrary Molecular Orientations
用于任意分子取向纳米图案化的介电光掩模
- 批准号:
1663394 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
PFI:AIR - TT: Ultra-fast electro-optical switching of nematic liquid crystals
PFI:AIR - TT:向列液晶的超快速电光开关
- 批准号:
1500204 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Materials engineering of chromonic and colloidal liquid crystals via mathematical modeling and simulation
DMREF/合作研究:通过数学建模和模拟进行有色和胶体液晶的材料工程
- 批准号:
1434185 - 财政年份:2014
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Structure and Properties of the Twist-Bend Nematic Phase
扭转弯曲向列相的结构和性质
- 批准号:
1410378 - 财政年份:2014
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似国自然基金
手性光学活性可调的螺旋贵金属纳米晶的制备及圆偏振光催化研究
- 批准号:21902148
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于自组装技术的量子点超晶格基光学微腔体系及宽带可调谐单模激光研究
- 批准号:61875256
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于有机凝胶体系手性微结构与聚集诱导圆偏振发光关系的研究
- 批准号:21702180
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胶态磁性光子晶体的调控机理及器件化应用
- 批准号:61775242
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
基于感光聚合物胶体晶体和内嵌金属富勒烯的带隙可调光子晶体制备研究
- 批准号:21574072
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Dynamics of Binary Anisotropic Magnetic Colloids
职业:二元各向异性磁胶体动力学
- 批准号:
2338064 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
CAREER: Phoretic Transport of Membrane-Bound Biological Colloids in Complex Environments
职业:复杂环境中膜结合生物胶体的电泳传输
- 批准号:
2237177 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Observation of multiple optical phenomena using a single wavelength: Prediction of coagulation of colloids by simultaneous measurement of light scattering and fluorescence
使用单一波长观察多种光学现象:通过同时测量光散射和荧光来预测胶体的凝固
- 批准号:
23K14044 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
- 批准号:
10616188 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别: