RAPID/Collaborative Research: Performance of Low-Rise Large-Volume Buildings in Florida during 2018 Hurricane Michael

RAPID/协作研究:2018 年迈克尔飓风期间佛罗里达州低层大体量建筑的性能

基本信息

  • 批准号:
    1904653
  • 负责人:
  • 金额:
    $ 3.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-11-15 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

Low-rise, large-volume (LRLV) metal buildings are a critical component to community and national resilience, often functioning as school auditoriums or gymnasiums, military or civilian aircraft hangars, distribution centers, supermarkets, churches, industrial and manufacturing buildings, and storage facilities protecting high-value property. Unfortunately, many of these structures suffered catastrophic collapses or irreparable damage following Hurricane Michael, which made landfall south of Panama City, Florida on October 10, 2018, as a Category 4 hurricane. Preliminary assessments by the NSF-supported Structural Extreme Events Reconnaissance network found that damage to these structures was common and often disproportionate to surrounding buildings, indicating a knowledge gap in the understanding of the dynamic loads on these structures and/or the mechanisms of structural response to these loads during extreme wind events. This Grant for Rapid Response Research (RAPID) will support field deployments to quickly and precisely capture the post-hurricane damage state of LRLV buildings in the form of high-resolution 3D point clouds, by means of terrestrial and airborne LIDAR and photogrammetry, and forensic structural engineering analysis. Post-processing and analysis of the data will inform advanced computational models of wind load and structural response for these buildings, which will ultimately enable safer and more efficient designs. By enabling a better understanding of the complex dynamic behavior of these buildings under wind loads, the findings from this project can inform future designs to reduce the frequency of LRLV building failures in future extreme wind events. The field reconnaissance and analysis will train undergraduate and graduate engineers in forensic engineering methods and provide high quality case studies that can be used by the engineering education community. Data collected from this award will be archived in the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Data Depot (https://www.DesignSafe-CI.org). During hurricane-force winds, the dimensions of LRLV metal buildings can exceed the integral length scales of the turbulent flow, producing incoherent gust structures over the surface of the building. The effects of this phenomenon on peak structural forces, and particularly the internal pressure response, are not well understood. The goals of this project are to: 1) preserve the precise post-hurricane condition of LRLV buildings impacted by Hurricane Michael prior to cleanup, 2) assess the extreme wind conditions to which the LRLV buildings were subjected, 3) conduct preliminary assessments of the primary drivers of LRLV building failures, and 4) position future research efforts for conducting advanced wind load and structural analysis simulations to address the key knowledge gaps that have led to large failure rates. Data gathering excursions (3-5 days) in Florida will use multiple sensing technologies to quickly gather detailed structural information on target structures including terrestrial LIDAR and measurements, and drone-based LIDAR and imagery. After reducing the data into 3D models, the analysis process will focus on parameters including building volume, unprotected opening size, building orientation with respect to primary wind direction, resonance of internal pressure, structural system (gravity and lateral), structure age, and pre-event condition. This study will address a key knowledge gap in hurricane-induced wind loads on LRLV buildings while simultaneously investigating the structural system response to these loads. The holistic approach will advance scientific understanding of the phenomena driving the failures of these systems and inform more resilient building designs for future events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低层,大容量(LRLV)金属建筑是社区和民族韧性的关键组成部分,通常是学校礼堂或体育馆,军事或民用飞机机库,分销中心,超市,教堂,工业和制造建筑以及保护高价物业的储藏设施。不幸的是,在迈克尔飓风飓风之后,这些结构中的许多结构遭受了灾难性的崩溃或无法弥补的损害,该飓风于2018年10月10日成为佛罗里达州巴拿马城以南的登陆,成为4级飓风。 NSF支撑的结构极端事件的初步评估发现,对这些结构的损害是普遍的,并且通常与周围建筑物不成比例,这表明在理解这些结构的动态载荷和/或在极端风事件期间对这些结构响应的机制有了知识差距。这项用于快速响应研究(快速)的赠款将支持现场部署,以通过陆地和空气传播的激光雷达和摄影测量法以及法医结构工程分析来快速,精确地以高分辨率3D点云的形式捕获LRLV建筑物的紫外线损伤状态。对数据的后处理和分析将为这些建筑物的风负载和结构响应的高级计算模型提供信息,这最终将实现更安全,更有效的设计。通过更好地了解这些建筑物在风载下的复杂动态行为,该项目的发现可以为将来的设计提供信息,以减少未来极端风事件中LRLV建筑物故障的频率。现场侦察和分析将培训法医工程方法的本科和研究生工程师,并提供高质量的案例研究,可以由工程教育社区使用。 该奖项收集的数据将存档在NSF支持的自然危害工程研究基础设施(NHERI)数据仓库(https://www.designsignsafe-ci.org)中。 在飓风中,LRLV金属建筑物的尺寸可以超过湍流的整体长度尺度,从而在建筑物表面产生不连贯的阵风结构。这种现象对峰结构力,尤其是内部压力反应的影响尚不清楚。该项目的目标是:1)保留在清理前受飓风迈克尔影响的LRLV建筑物的精确后灌肠状况,2)评估LRLV建筑物所受到的极端风条件,3)进行初步评估,对LRLV的主要驱动因素进行初步评估,以确定LRLV的主要驱动因素,以确定较大的型号型号,以实现较大的型号型号,以实现较大的型号分析率,以实现较大的型号分析,以实现较大的实力分析率,以实现较大的实力分析,以实现较大的型号,以实现较大的型号的型号,以实现大量的分析量。佛罗里达州的数据收集游览(3-5天)将使用多种传感技术来快速收集有关目标结构的详细结构信息,包括陆地激光雷达和测量,以及基于无人机的激光雷达和图像。将数据减少为3D模型后,分析过程将重点关注参数,包括建筑物的体积,未保护的开放尺寸,相对于主要风向的建筑定位,内部压力的共振,结构系统(重力和横向),结构年龄和事前情况。这项研究将解决LRLV建筑物飓风引起的风负载的关键知识差距,同时研究对这些负载的结构系统响应。整体方法将提高对推动这些系统失败的现象的科学理解,并为未来事件提供更有弹性的建筑设计。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Marshall其他文献

1.61 Views on Social Media Use by Mental Health Professionals
  • DOI:
    10.1016/j.jaac.2022.09.077
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Marshall;Salma Malik;Sheena Joychan
  • 通讯作者:
    Sheena Joychan
Visual function: How spiders find the right rock to crawl under
  • DOI:
    10.1016/s0960-9822(00)80104-9
  • 发表时间:
    1999-12-30
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Marshall
  • 通讯作者:
    Justin Marshall
Reflections on Deploying Distributed Consultation Technologies with Community Organisations
对社区组织部署分布式咨询技术的思考
Dovetails: personhood, citizenship, and craft between children and older adults
燕尾榫:儿童和老年人之间的人格、公民身份和工艺
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Collingham;Jayne Wallace;Jill Brewster;R. Whittingham;Sebastian Prost;Justin Marshall;Michelle Kindleysides;W. Benson
  • 通讯作者:
    W. Benson

Justin Marshall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Marshall', 18)}}的其他基金

Crafting a Healthier Internet: People, Things and our Digital Society
打造更健康的互联网:人、物和我们的数字社会
  • 批准号:
    AH/V005189/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Research Grant
13TSB_ACT: Lobster Grower - Develop the technology to fast track the aquaculture potential for the European Lobster
13TSB_ACT:龙虾种植者 - 开发技术以快速挖掘欧洲龙虾水产养殖潜力
  • 批准号:
    BB/M005194/1
  • 财政年份:
    2014
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Research Grant
Resilient Connections Between Hard Walls and Steel Frames in Metal Buildings
金属建筑中硬墙和钢框架之间的弹性连接
  • 批准号:
    1335181
  • 财政年份:
    2013
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Collaborative Research: An Innovative Gap Damper to Control Seismic Isolator Displacements in Extreme Earthquakes
合作研究:控制极端地震中隔震器位移的创新间隙阻尼器
  • 批准号:
    1100922
  • 财政年份:
    2011
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了