InP/ZnS Luminescent Quantum Dots for Bioimaging with Improved Cellular Targeting Capabilities

用于生物成像的 InP/ZnS 发光量子点具有改进的细胞靶向能力

基本信息

  • 批准号:
    1904600
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Quantum dots are extremely small nanocrystals of semiconductors that are 100,000 times smaller than a grain of salt and contain just a few thousand atoms. When exposed to light, quantum dots luminesce, and the color of their emitted light depends on their size. It is these unique optical properties that make quantum dots useful in applications ranging from cell phones to light emitting diodes (LEDs). Quantum dots have also attracted the attention of the biotechnology community due to their potential use in bioimaging and biosensing applications. However, most quantum dots contain heavy metals like cadmium and lead that are toxic to living cells and their surfaces quickly become coated with proteins and lipids that degrade their stability. With support from the Macromolecular, Supramolecular and Nanochemistry Program in the Division of Chemistry, Professor Zeev Rosenzweig in the Department of Chemistry and Biochemistry at the University of Maryland Baltimore County (UMBC) is developing non-toxic quantum dots from indium phosphide. Working with his students and collaborator Dr. Karen Leinkamp at Albert-Ludwigs Universitat in Germany, Professor Rosenzweig is modifying the surface of the quantum dots with novel polymers that inhibit the formation of protein corona on their surface, allowing them to maintain their bright luminescence and stability in biological solutions. Their discoveries could have broad implications for using semiconductor quantum dots in biological applications. The project provides interdisciplinary research training opportunities for graduate and undergraduate students involved. Professor Rosenzweig and his team are also actively engaged in outreach to nearby high schools to introduce students to concepts in nanoscience and nanotechnology, including their impact on human health and the environment.Highly emitting quantum dots (QDs) are currently limited in their chemical stability in complex biological media, and in their cellular targeting efficiency due to protein corona formation. The project is addressing these limitations, enabling the use of InPZn/ZnS QDs as non-toxic bioimaging probes. The goals of the project are realized through the following specific aims: Aim 1) Modifying the surface of InPZn/ZnS QD with oxonorbornene-based polymers that allow systematic functionalization of the polymer side chains to inhibit corona formation. Aim 2) Development and use of a high-resolution fluorescence microscopy system, typically used in single molecule fluorescence studies, to follow in real time the process of protein corona formation on InPZn/ZnS QDs without photodegradation, or the need for large quantities of nanoparticles. Aim 3) Demonstrate that the surface modification of InPZn/ZnS QDs with oxonorbornene polymers results in protein corona formation inhibition, and increased macrophage targeting efficiency. The project provides interdisciplinary research training opportunities for graduate and undergraduate students. It also enhances the recruitment of students from underrepresented groups to scientific research in nanomaterials chemistry through partnership with the national Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子点是半导体的极小纳米晶体,比一粒盐小100,000倍,仅包含几千个原子。 当暴露于光线时,量子点发光,其发光的颜色取决于它们的尺寸。 正是这些独特的光学特性使量子点在从手机到发光二极管(LED)的应用中有用。 量子点还吸引了生物技术界的注意力,因为它们在生物成像和生物传感应用中的潜在使用。但是,大多数量子点都包含诸如镉和铅的重金属,它们对活细胞有毒,它们的表面迅速被蛋白质和脂质涂覆,从而降解其稳定性。 在化学系的大分子,超分子和纳米化学计划的支持下,马里兰州巴尔的摩县化学与生物化学系的Zeev Rosenzweig教授正在开发来自Indim磷酸化的非毒性量子点。罗森茨威格教授与德国阿尔伯特·卢德维格斯大学(Albert-Ludwigs Universitat)的他的学生和合作者Karen Leinkamp博士合作,正在用新型聚合物修改量子点的表面,这些聚合物抑制其表面上蛋白质的表面形成,从而使它们能够在生物学解决方案中保持明亮的发光和稳定性。他们的发现可能对在生物应用中使用半导体量子点具有广泛的影响。该项目为研究生和本科生提供了跨学科的研究培训机会。 Rosenzweig教授和他的团队还积极参与附近的高中,向学生介绍纳米科学和纳米技术的概念,包括他们对人类健康和环境的影响。当前发射量子点(QDS)在复杂的生物学培养基中的化学稳定性限制在复杂的生物学培养基中,以及由于其细胞靶向效应而构成了蛋白质corno corona corona corona corona的形成。该项目正在解决这些局限性,从而可以将INPZN/ZNS QD用作无毒的生物成像探针。该项目的目标是通过以下特定目的实现的:目标1)用基于氧骨的聚合物对INPZN/ZnS QD的表面进行修饰,从而使聚合物侧链的系统功能化以抑制电晕的形成。目的2)通常用于单分子荧光研究中的高分辨率荧光显微镜系统的开发和使用,以实时遵循Inpzn/Zns QD上蛋白质电晕形成的过程,而无需光降解或需要大量纳米粒子。目的3)证明具有氧音烯聚合物聚合物的INPZN/ZnS QD的表面修饰会导致蛋白质电晕的形成抑制,并提高巨噬细胞的靶向效率。 该项目为研究生和本科生提供了跨学科的研究培训机会。 它还通过与国家跨学科的科学与教育访问(增加)的国家跨学科联盟合作(增加)的合作,从而增强了从代表性不足的群体招募到纳米材料化学的科学研究。该奖项反映了NSF的法规任务,并认为通过基金会的知识率评估了智力优点和广泛的范围,因此值得通过评估来进行评估。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans
  • DOI:
    10.1016/j.impact.2021.100318
  • 发表时间:
    2021-04-23
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Niemuth,Nicholas J.;Williams,Denise N.;Klaper,Rebecca D.
  • 通讯作者:
    Klaper,Rebecca D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zeev Rosenzweig其他文献

Zeev Rosenzweig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zeev Rosenzweig', 18)}}的其他基金

Non Toxic InP Quantum Dots for Luminescence Cellular Imaging and Sensing
用于发光细胞成像和传感的无毒 InP 量子点
  • 批准号:
    1506995
  • 财政年份:
    2015
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Advanced Chemical Sensing and Imaging
REU 网站:先进化学传感和成像本科生的研究经验
  • 批准号:
    1460653
  • 财政年份:
    2015
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
CAREER: Synthesis, Characterization and Application of Fluorescent Nanolipobeads for Optochemical Sensing in Single Living Cells
职业:用于单活细胞光化学传感的荧光纳米脂珠的合成、表征和应用
  • 批准号:
    9874498
  • 财政年份:
    1999
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似国自然基金

稀土/过渡金属掺杂六角相ZnS纳米晶可控合成、力致发光机理及传感应用研究
  • 批准号:
    12374371
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
ZnS/钙钛矿异质结的能量传递调控和应力发光增强机理研究
  • 批准号:
    62205072
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
ZnS/钙钛矿异质结的能量传递调控和应力发光增强机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于LSPR荧光增强CuInSexS2-x/ZnS量子点在发光太阳能聚光器中的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于LSPR荧光增强CuInSexS2-x/ZnS量子点在发光太阳能聚光器中的应用研究
  • 批准号:
    22105134
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Lanthanide Containing ZnS Nanoparticles
含有 ZnS 纳米粒子的镧系元素
  • 批准号:
    7573743
  • 财政年份:
    2009
  • 资助金额:
    $ 43万
  • 项目类别:
Lanthanide Containing ZnS Nanoparticles
含有 ZnS 纳米粒子的镧系元素
  • 批准号:
    7825382
  • 财政年份:
    2009
  • 资助金额:
    $ 43万
  • 项目类别:
1次元機能性酸化物の創製と化学・物理的な特性解明
一维功能氧化物的创建及其化学和物理性质的阐明
  • 批准号:
    06F06555
  • 财政年份:
    2006
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Structured doping in luminescent crystals, ZnS and MgA1204
发光晶体 ZnS 和 MgA1204 中的结构化掺杂
  • 批准号:
    6696-1989
  • 财政年份:
    1991
  • 资助金额:
    $ 43万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Tunable Color Electro Luminescent Device
可调颜色电致发光器件的研制
  • 批准号:
    63850089
  • 财政年份:
    1988
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了