CHS: Medium: Collaborative Research: Charting a Research Agenda in Artificial Intelligence-Mediated Communication
CHS:媒介:协作研究:制定人工智能介导的沟通研究议程
基本信息
- 批准号:1901151
- 负责人:
- 金额:$ 80.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) algorithms are increasingly augmenting interpersonal communication. What used to be Computer-Mediated Communication (CMC) increasingly involves AI-Mediated Communication (AI-MC): interpersonal communication not simply transmitted by technology but augmented --- or even generated --- by algorithms to achieve specific outcomes. While some simple forms of AI-MC are already prevalent, recent advances in Natural Language Processing provide new directions for augmenting communication online by, for example, modifying texts to include more formal language or enhancing resumes to make them more professional. The advances are not limited to text: increasingly, photos and videos can be automatically manipulated with AI, leading to deep fakes, in which people are shown to act or behave in ways that they never did. Indeed, if a communication is mediated, AI can potentially modify, augment, or even generate the message. AI-MC is therefore likely to have a profound effect on how we communicate, greatly complicating our understanding of technology-mediated human interactions. The project will inform the development of systems that implement AI-mediated communication in a socially desirable and ethically responsible manner. The technical objectives of this project are to develop a framework that charts how AI-MC will impact cyber-human systems research and inform the design of AI-MC technologies. The project will provide some of the first investigations in key areas of AI-MC: 1) the design and perception of AI-MC systems; 2) the potential impact of AI-MC on communication dynamics; 3) the impact of AI-MC on social-psychological dynamics of online self-presentation, with a focus on impression formation and trust, including malicious contexts; and 4) understanding ethical concerns and opportunities around issues like bias, manipulation, and transparency in AI-MC technologies. These objectives will be accomplished through a series of novel empirical studies employing approaches including computational, behavioral, and qualitative methods. These activities will include online and lab experiments that examine behavioral processes and outcomes associated with various forms of AI-MC, the design and development of an AI-MC research platform, as well as a qualitative study of developers, engineers, and designers working with AI-MC systems. In addition, this project will build on the public attention and intrigue around AI to offer design and technology workshops to K-12 students in New York City public schools, using AI-MC to connect the ideas of AI to technologies students use in their everyday lives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)算法正在越来越多地增加人际关系的交流。曾经是计算机介导的通信(CMC)越来越涉及AI介导的通信(AI-MC):人际关系通信不仅是由技术传输的,而且还通过算法增强(甚至是通过算法生成)来实现特定结果。尽管一些简单的AI-MC形式已经很普遍,但自然语言处理的最新进展为例如修改文本以包括更多正式语言或增强简历以使其更专业的新文本提供了新的方向来在线增强通信。进步不仅限于文本:越来越多的照片和视频可以通过AI自动操纵,从而导致深层假货,其中人们表现出人们以从未做过的方式行事或行为。实际上,如果传达通信,AI可以可能修改,增强甚至生成消息。因此,AI-MC可能会对我们进行交流的方式产生深远的影响,从而使我们对技术介导的人类互动的理解变得更加复杂。该项目将告知以社会可取和具有道德责任的方式实施AI介导的通信的系统的开发。 该项目的技术目标是开发一个框架,该框架列出了AI-MC将如何影响网络人类系统研究并为AI-MC技术的设计提供信息。该项目将在AI-MC的关键领域提供一些首次研究:1)AI-MC系统的设计和感知; 2)AI-MC对通信动态的潜在影响; 3)AI-MC对在线自我表现的社会心理动态的影响,重点是印象形成和信任,包括恶意背景; 4)了解AI-MC技术中偏见,操纵和透明度等问题的道德问题和机会。这些目标将通过一系列新的实证研究来实现,采用包括计算,行为和定性方法在内的方法。这些活动将包括在线和实验室实验,这些实验检查与各种形式的AI-MC相关的行为过程和结果,AI-MC研究平台的设计和开发,以及对使用AI-MC Systems工作的开发人员,工程师和设计师的定性研究。 In addition, this project will build on the public attention and intrigue around AI to offer design and technology workshops to K-12 students in New York City public schools, using AI-MC to connect the ideas of AI to technologies students use in their everyday lives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methodological Middle Spaces: Addressing the Need for Methodological Innovation to Achieve Simultaneous Realism, Control, and Scalability in Experimental Studies of AI-Mediated Communication
方法论的中间空间:满足方法论创新的需求,以在人工智能介导的通信的实验研究中同时实现现实性、控制性和可扩展性
- DOI:10.1145/3579506
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Aghajari, Zhila;Baumer, Eric P.;Hohenstein, Jess;Jung, Malte F.;DiFranzo, Dominic
- 通讯作者:DiFranzo, Dominic
The Social Impact of Deepfakes
- DOI:10.1089/cyber.2021.29208.jth
- 发表时间:2021-03-01
- 期刊:
- 影响因子:6.6
- 作者:Hancock, Jeffrey T.;Bailenson, Jeremy N.
- 通讯作者:Bailenson, Jeremy N.
AI Writing Assistants Influence Topic Choice in Self-Presentation
- DOI:10.1145/3544549.3585893
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Ritika Poddar;R. Sinha;Mor Naaman;Maurice Jakesch
- 通讯作者:Ritika Poddar;R. Sinha;Mor Naaman;Maurice Jakesch
Computer Vision and Conflicting Values: Describing People with Automated Alt Text.
计算机视觉和冲突的价值观:用自动替代文本描述人。
- DOI:10.1145/3461702.3462620
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hanley, M.
- 通讯作者:Hanley, M.
AI as a moral crumple zone: The effects of AI-mediated communication on attribution and trust
- DOI:10.1016/j.chb.2019.106190
- 发表时间:2020-05-01
- 期刊:
- 影响因子:9.9
- 作者:Hohenstein, Jess;Jung, Malte
- 通讯作者:Jung, Malte
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mor Naaman其他文献
VoterFraud2020: a Multi-modal Dataset of Election Fraud Claims on Twitter
VoterFraud2020:Twitter 上选举舞弊索赔的多模式数据集
- DOI:
10.1609/icwsm.v15i1.18113 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Abilov;Yiqing Hua;Hana Matatov;Ofra Amir;Mor Naaman - 通讯作者:
Mor Naaman
Requirements for mobile photoware
手机拍照软件要求
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Morgan G. Ames;Dean Eckles;Mor Naaman;M. Spasojevic;N. House - 通讯作者:
N. House
The Role of Source and Expressive Responding in Political News Evaluation
来源和表达性回应在政治新闻评价中的作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Maurice Jakesch;Moran Koren;A. Evtushenko;Mor Naaman - 通讯作者:
Mor Naaman
"People Are Either Too Fake or Too Real": Opportunities and Challenges in Tie-Based Anonymity
“人要么太假,要么太真实”:基于领带的匿名的机遇与挑战
- DOI:
10.1145/3025453.3025956 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiao Ma;Nazanin Andalibi;L. Barkhuus;Mor Naaman - 通讯作者:
Mor Naaman
Modeling Sub-Document Attention Using Viewport Time
使用视口时间建模子文档注意力
- DOI:
10.1145/3025453.3025916 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Max Grusky;J. Jahani;Josh Schwartz;D. Valente;Yoav Artzi;Mor Naaman - 通讯作者:
Mor Naaman
Mor Naaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mor Naaman', 18)}}的其他基金
EAGER: Using Large-scale Web Data for Online Attention Models and Identification of Reading Disabilities
EAGER:使用大规模网络数据进行在线注意力模型和阅读障碍识别
- 批准号:
1840751 - 财政年份:2018
- 资助金额:
$ 80.01万 - 项目类别:
Standard Grant
EAGER: Strengthening Communities Through ICT-Enabled Indirect Resource Exchange
EAGER:通过信息通信技术支持的间接资源交换加强社区
- 批准号:
1665169 - 财政年份:2017
- 资助金额:
$ 80.01万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Detection and Presentation of Community and Global Event Content from Social Media Sources
III:小型:协作研究:从社交媒体源检测和呈现社区和全球活动内容
- 批准号:
1444493 - 财政年份:2013
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
CAREER: Novel Approaches for Reasoning about Local Communities from Social Awareness Streams Data
职业:从社会意识流数据推理当地社区的新方法
- 批准号:
1446374 - 财政年份:2013
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
CAREER: Novel Approaches for Reasoning about Local Communities from Social Awareness Streams Data
职业:从社会意识流数据推理当地社区的新方法
- 批准号:
1054177 - 财政年份:2011
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Detection and Presentation of Community and Global Event Content from Social Media Sources
III:小型:协作研究:从社交媒体源检测和呈现社区和全球活动内容
- 批准号:
1017845 - 财政年份:2010
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 80.01万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 80.01万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 80.01万 - 项目类别:
Standard Grant