CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
基本信息
- 批准号:2236644
- 负责人:
- 金额:$ 40.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding quantitative data is a foundation of science, education, and the public communication of information about public policy and health. Our brains process and understand numbers far more efficiently when we can rely on data visualizations, allowing us to process patterns in data by leveraging the 40% of our brain that processes visual patterns in the real world. Decades of research in data visualization has produced evidence-backed guidelines for how to design the best data visualization for a given data analysis or communication task. But this process is limited by our incomplete understanding of the process by which we recognize patterns in visualized data. When people see a weather map color-coded by temperature, are they processing the hot and cold colors at the same perceptual moment, or just one? When they inspect a scatterplot, are people processing individual points, or the shape of the whole collection? This project will combine past research in the study of human vision, research in data visualization, and new research at the intersection of those two fields to create a model of how the visual system pulls patterns and statistics from visualized data. This model will lead to a more complete understanding of how to best harness the power of human vision to analyze a given dataset and to communicate a critical pattern clearly to an audience; this model will then be used to improve existing visualization tools.Data visualization research has sought to find the best visualization for a given data analysis task. For example, scatterplots allow relatively precise judgment of correlations, while line graphs are a powerful way to inspect trends over time. But systematically testing the performance of many tasks across many visualizations has not revealed systematic patterns of performance that would allow us to predict why some matches lead to better performance, what design changes might alter that performance, or how novel visualizations might perform. One problem is that current work is limited to focusing on what viewers want to accomplish, without being able to capture how viewers actually perform these tasks. The goal of the proposed research is to refine and empirically evaluate a lower-level model of "perceptual tasks" that underlie higher level tasks (e.g. "What is the average value in the dataset?") based on established results in perceptual psychology. First, the team will conduct a qualitative study that documents how people break a high-level task down into perceptual tasks, followed by an empirical evaluation of those qualitative findings. Next, the team will measure the precision and operation of the proposed perceptual tasks -- Filter Image, Judge Shape, Compute Distributions and Compute Ratio -- along with other tasks identified in the first study; together, these will provide a set of empirically-backed design guidelines to improve visualization effectiveness. Finally, the team will validate the model by comparing its predictions to findings from previous literature, then integrate new guidelines as constraints into the Draco visualization recommender system, which should improve its ability to predict the performance of different visualization designs. The resulting guidelines, model, and integration into Draco promise in turn to improve visualization education and practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解定量数据是科学,教育以及有关公共政策和健康信息的公众沟通的基础。当我们可以依靠数据可视化时,我们的大脑处理和理解数字效率更高,从而使我们能够通过利用40%的大脑来处理数据中的图案,从而处理现实世界中的视觉模式。数十年的数据可视化研究已经为如何设计给定数据分析或通信任务的最佳数据可视化生成了证据支持的指南。但是,这个过程受到我们对我们识别可视化数据中模式的过程的不完全理解的限制。当人们看到由温度颜色编码的天气图时,他们是在同一感知时刻处理冷色彩,还是仅一个?当他们检查散点图时,人们是处理各个点还是整个收藏的形状?该项目将在对人类视觉,数据可视化研究以及这两个领域的交集的新研究中的研究中结合使用,以创建一个模型,以了解视觉系统如何从可视化数据中提取模式和统计数据。该模型将使人们对如何最好地利用人类愿景的力量进行更完整的了解,以分析给定数据集并清楚地向听众传达关键模式;然后,该模型将用于改善现有的可视化工具。数据可视化研究试图为给定的数据分析任务找到最佳的可视化。例如,散点图可以对相关性进行相对精确的判断,而线图是随着时间的推移检查趋势的有力方法。但是,系统地测试许多可视化的许多任务的性能并未揭示出系统的性能模式,这将使我们能够预测某些匹配的性能会导致更好的性能,哪些设计变化可能会改变该性能或新颖的可视化性能。一个问题是,当前的工作仅限于关注观众想要完成的工作,而无需捕获观众如何实际执行这些任务。拟议的研究的目的是根据知名心理学的既定结果来完善和经验评估较高级别任务的“感知任务”模型(例如,数据集中的平均值是多少?”)。首先,该团队将进行一项定性研究,记录人们如何将高级任务分解为感知任务,然后对这些定性发现进行经验评估。接下来,团队将衡量所提出的感知任务的精度和操作 - 过滤图像,判断形状,计算分布和计算比率 - 以及第一项研究中确定的其他任务;这些将共同提供一组经验支持的设计指南,以提高可视化效果。最后,团队将通过将其预测与以前文献的发现进行比较,然后将新指南作为约束作为Draco可视化推荐系统的限制,这应该提高其预测不同可视化设计的性能的能力。由此产生的指南,模型和集成到Draco的承诺反过来,以改善可视化教育和实践。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Arrangement of Marks Impacts Afforded Messages: Ordering, Partitioning, Spacing, and Coloring in Bar Charts
标记的排列影响所提供的消息:条形图中的排序、分区、间距和着色
- DOI:10.1109/tvcg.2023.3326590
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Fygenson, Racquel;Franconeri, Steven;Bertini, Enrico
- 通讯作者:Bertini, Enrico
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrico Bertini其他文献
A novel mutation in NDUFB11 unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia
NDUFB11 的新突变揭示了与乳酸性酸中毒和铁粒幼细胞贫血相关的新临床表型
- DOI:
10.1111/cge.12790 - 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
A. Torraco;Marzia Bianchi;D. Verrigni;Vania Gelmetti;L. Riley;M. Niceta;Diego Martinelli;A. Montanari;Yiran Guo;T. Rizza;D. Diodato;M. Nottia;B. Lucarelli;Francesco Sorrentino;F. Piemonte;Silvia Francisci;Marco Tartaglia;E. M. Valente;Carlo Dinisi;John Christodoulou;Enrico Bertini;R. Carrozzo - 通讯作者:
R. Carrozzo
New familial mitochondrial encephalopathy with macrocephaly, cardiomyopathy, and complex I deficiency
新家族性线粒体脑病伴有大头畸形、心肌病和复合物 I 缺乏
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:11.2
- 作者:
C. Dionisi;W. Ruitenbeek;G. Fariello;H. Bentlage;R. J. A. Wanders;H. Schägger;C. Bosman;C. Piantadosi;G. Sabetta;Enrico Bertini - 通讯作者:
Enrico Bertini
Disorders of Voluntary Muscle: Dystrophic myopathies of early childhood onset (congenital muscular dystrophies)
随意肌疾病:儿童早期发病的营养不良性肌病(先天性肌营养不良)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
C. Bönnemann;Enrico Bertini - 通讯作者:
Enrico Bertini
Myelinated retinal fibers in autosomal recessive spastic ataxia of Charlevoix‐Saguenay
夏勒瓦-萨格奈常染色体隐性痉挛性共济失调中的有髓视网膜纤维
- DOI:
10.1111/j.1468-1331.2010.03335.x - 发表时间:
2011 - 期刊:
- 影响因子:5.1
- 作者:
E. Vingolo;R. Fabio;S. Salvatore;G. Grieco;Enrico Bertini;Vincenzo Leuzzi;C. Nesti;A. Filla;A. Tessa;F. Pierelli;F. M. Santorelli;C. Casali - 通讯作者:
C. Casali
Antioxidant enzymes in blood of patients with Friedreich's ataxia
弗里德赖希共济失调患者血液中的抗氧化酶
- DOI:
10.1136/adc.86.5.376 - 发表时间:
2002 - 期刊:
- 影响因子:5.2
- 作者:
G. Tozzi;M. Nuccetelli;M. Bello;Sergio Bernardini;L. Bellincampi;S. Ballerini;L. Gaeta;C. Casali;A. Pastore;Giorgio Federici;Enrico Bertini;F. Piemonte - 通讯作者:
F. Piemonte
Enrico Bertini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrico Bertini', 18)}}的其他基金
RAPID: Visualizing Epidemical Uncertainty for Personal Risk Assessment
RAPID:可视化流行病不确定性以进行个人风险评估
- 批准号:
2235625 - 财政年份:2022
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
RAPID: Visualizing Epidemical Uncertainty for Personal Risk Assessment
RAPID:可视化流行病不确定性以进行个人风险评估
- 批准号:
2028374 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
1900941 - 财政年份:2019
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CRI: II-New: An Infrastructure of Display Devices to Study Visual Analytics Beyond the Desktop
CRI:II-新:用于研究桌面之外的视觉分析的显示设备基础设施
- 批准号:
1730396 - 财政年份:2017
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant