TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
基本信息
- 批准号:1839217
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many scientific disciplines computational simulations are used to enhance our understanding of physical processes of complex systems. In all such simulations simplifications are required to make the problem tractable, limiting the scope of the questions that can be addressed. Generally, computational simulations of large systems with many interacting components, based on the governing physics, requires complex and time consuming computations. This project will apply deep learning neural networks (NN) with geometric transformations based on the physics of the system to accurately approximate traditional physics-based computational simulations in a highly efficient manner. The increased efficiency imparted by the NN model will facilitate the asking of scientific questions which are currently computationally intractable. While the proposed work will focus on using this method to discover new strain-induced polar phases and phase competition, and to understand the large-scale structure in the universe, the concepts developed in this work can be applied to computational simulations in other scientific disciplines.The proposed work will focus on the development of foundational data science methods and the application of these methods to augment computationally-expensive science-based generative models in a way that is principled and efficient, thereby enabling improved data-driven scientific inference. The work will place specific emphasis on the design of neural network models, which through physically-significant domain architectures can approximate N-body and highly-correlated phenomena with minimal loss of information. The work will develop tools to guide the discovery and experimental synthesis of new strain-induced polar phases and phase competition, which exhibit enhanced electromechanical responses; and it will expand our simulation capabilities and understanding of the large-scale structure in the universe. Ultimately, this work will provide both domain specific advances, as well as a framework for other domain areas to augment computationally intensive, highly-correlated, N-body problems with data-driven models, which respect the physics of the problem and lead to increased computational efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多科学学科中,计算模拟被用来增强我们对复杂系统物理过程的理解。在所有此类模拟中,都需要进行简化以使问题易于处理,从而限制了可以解决的问题的范围。一般来说,基于控制物理的具有许多相互作用组件的大型系统的计算模拟需要复杂且耗时的计算。该项目将应用具有基于系统物理学的几何变换的深度学习神经网络(NN),以高效的方式准确地近似传统的基于物理学的计算模拟。神经网络模型提高的效率将有助于提出目前在计算上难以解决的科学问题。虽然拟议的工作将侧重于使用这种方法来发现新的应变引起的极性相和相竞争,并了解宇宙中的大规模结构,但这项工作中开发的概念可以应用于其他科学学科的计算模拟拟议的工作将侧重于基础数据科学方法的开发以及这些方法的应用,以原则性和高效的方式增强计算成本昂贵的基于科学的生成模型,从而改进数据驱动的科学推理。这项工作将特别强调神经网络模型的设计,该模型通过具有物理意义的域架构可以以最小的信息损失来近似 N 体和高度相关的现象。这项工作将开发工具来指导新应变诱导极性相和相竞争的发现和实验合成,这些相竞争表现出增强的机电响应;它将扩展我们的模拟能力和对宇宙大尺度结构的理解。最终,这项工作将提供特定领域的进步,以及其他领域的框架,以通过数据驱动模型来增强计算密集型、高度相关的 N 体问题,这些模型尊重问题的物理原理并导致增加该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Probabilistic Autoencoder for Type Ia Supernova Spectral Time Series
Ia型超新星光谱时间序列的概率自编码器
- DOI:10.3847/1538-4357/ac7c08
- 发表时间:2022-07-15
- 期刊:
- 影响因子:0
- 作者:G. Stein;U. Seljak;V. Boehm;G. Aldering;P. Antilogus;C. Aragon;S. Bailey;C. Baltay;S. Bongard
- 通讯作者:S. Bongard
Marginal unbiased score expansion and application to CMB lensing
边际无偏分数扩展及其在 CMB 透镜中的应用
- DOI:10.1103/physrevd.105.103531
- 发表时间:2022-05
- 期刊:
- 影响因子:5
- 作者:Millea, Marius;Seljak, Uroš
- 通讯作者:Seljak, Uroš
High mass and halo resolution from fast low resolution simulations
通过快速低分辨率模拟获得高质量和光晕分辨率
- DOI:10.1088/1475-7516/2020/04/002
- 发表时间:2020-04
- 期刊:
- 影响因子:6.4
- 作者:Dai, Biwei;Feng, Yu;Seljak, Uroš;Singh, Sukhdeep
- 通讯作者:Singh, Sukhdeep
Efficient optimal reconstruction of linear fields and band-powers from cosmological data
从宇宙学数据中高效地优化线性场和带功率重建
- DOI:10.1088/1475-7516/2019/10/035
- 发表时间:2019-10
- 期刊:
- 影响因子:6.4
- 作者:Horowitz, B.;Seljak, U.;Aslanyan, G.
- 通讯作者:Aslanyan, G.
Translation and rotation equivariant normalizing flow (TRENF) for optimal cosmological analysis
用于最佳宇宙学分析的平移和旋转等变归一化流 (TRENF)
- DOI:10.1093/mnras/stac2010
- 发表时间:2022-07
- 期刊:
- 影响因子:4.8
- 作者:Dai, Biwei;Seljak, Uroš
- 通讯作者:Seljak, Uroš
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uros Seljak其他文献
A comparison of cosmological Boltzmann codes : are we ready for high precision cosmology?
宇宙学玻尔兹曼代码的比较:我们准备好迎接高精度宇宙学了吗?
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Uros Seljak; Naoshi Sugiyama; Martin White; Matias Zaldarriaga - 通讯作者:
Matias Zaldarriaga
Uros Seljak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uros Seljak', 18)}}的其他基金
Elements: A new generation of samplers for astronomy and physics
Elements:新一代天文学和物理学采样器
- 批准号:
2311559 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CDS&E: Reconstruction of universe's initial conditions with galaxies
CDS
- 批准号:
1814370 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CAREER: Investigation of Cosmological Models with Weak Lensing
职业:弱透镜宇宙学模型的研究
- 批准号:
0810820 - 财政年份:2007
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
CAREER: Investigation of Cosmological Models with Weak Lensing
职业:弱透镜宇宙学模型的研究
- 批准号:
0132953 - 财政年份:2002
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
相似国自然基金
基于各向异性ReS2的1T/2H二维范德瓦尔斯异质结的可控构筑及其光电性能研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于熔融盐法可控构建多功能双位点TiO2/Al-ReS2及其光催化降解全氟化合物机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
辉钼矿结构MoS2-ReS2固溶体的热力学性质研究及其对铼富集成矿的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
n-HA/Res/CS微球在骨质疏松性骨折中的作用机制研究
- 批准号:82172442
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
RES2(Polygalacturonase)参与四分体果胶壁降解影响温敏不育系育性转变机制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
相似海外基金
TRIPODS+X:RES:Collaborative Research: Multi-Level Graph Representation for Exploring Big Data
TRIPODS X:RES:协作研究:探索大数据的多级图表示
- 批准号:
1839167 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
TRIPODS+X:RES:Collaborative Research: Improving Templated Microstructures via Topological Data Analysis
TRIPODS X:RES:协作研究:通过拓扑数据分析改进模板化微观结构
- 批准号:
1839267 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Tripods+X:Res: Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
- 批准号:
1839294 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
- 批准号:
1930049 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research:Privacy-Preserving Genomic Data Analysis
TRIPODS X:RES:协作研究:隐私保护基因组数据分析
- 批准号:
1839283 - 财政年份:2018
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant