TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science

TRIPODS X:RES:合作研究:气候科学中的数据科学前沿

基本信息

  • 批准号:
    1930049
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Understanding the factors that determine regional climate variability and change is a challenge with important implications for the economy, security, and environmental sustainability of many regions around the globe. Our understanding and modeling of the large-scale dynamics of the Earth climate system and associated regional-scale climate variability significantly affects our ability to predict and mitigate climatic extremes and hazards. Earth observations and climate model outputs are witnessing an unprecedented increase in data volume, creating new opportunities to advance climate science but also leading to new data science challenges that must be addressed using tools from mathematics, statistics, and computer science. This project focuses on two central challenges at the heart of modern data-enabled climate science: (1) Increasing the predictive capacity of subseasonal forecasts by discovering and quantifying the sources of (un)predictability, including known and emergent climate modes and their interactions and non-stationarities; and (2) Understanding and quantifying the intricate space-time dynamics of the climate system to provide guidance for climate model assessment and regional forecasting. This project brings together an interdisciplinary team that combines expertise in both hydroclimate science and statistical machine learning to create new platforms for climate diagnostics and prognostics. The broader impacts of an enhanced knowledge of the climate system and robust and accurate seasonal forecasts have wide-ranging implications for society as a whole. For example, better seasonal forecasts will allow water resource managers to make sustainable decisions for water allocation.This TRIPODS+CLIMATE project will develop novel machine learning and network estimation methodologies for analyzing the climate system over a range of space and time scales, to understand climate modes of variability and change and to explore their predictive ability for regional hydroclimatology. The two main objectives of this project are the following. Objective 1: Develop novel classification and regression tools that account for highly-correlated features or covariates, nonlinear interaction terms in high-dimensional settings, and nonstationarity in climate observations. These tools will be used to improve seasonal-to-subseasonal forecasts of regional precipitation using multidimensional climate modes and feature vectors in the presence of evolving dynamics and nonstationarities. Objective 2: Develop network identification methods that leverage recent advances in machine learning and statistics and that can account for the nonstationarity and limited timeframe of climate data. The network representation will be used to analyze the structure and dynamics of the learned dependencies to contextualize and interpret them physically, and to quantify changing patterns in climate modes and their regional predictive capacity. Emphasis will be placed on the western Pacific dynamics where an interhemispheric bi-directional connection has recently been discovered, promising earlier and more accurate seasonal-to-subseasonal forecasts in the southwestern US and other parts of the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解决定区域气候变率和变化的因素是一项挑战,对全球许多地区的经济、安全和环境可持续性具有重要影响。我们对地球气候系统大尺度动态和相关区域尺度气候变化的理解和建模极大地影响了我们预测和减轻极端气候和灾害的能力。地球观测和气候模型输出的数据量正在空前增加,为推进气候科学创造了新的机会,但也带来了新的数据科学挑战,必须使用数学、统计学和计算机科学的工具来解决这些挑战。该项目重点关注现代数据驱动的气候科学核心的两个核心挑战:(1)通过发现和量化(不可)预测性的来源(包括已知和新兴的气候模式及其相互作用和影响)来提高次季节预报的预测能力。非平稳性; (2)理解和量化气候系统复杂的时空动态,为气候模式评估和区域预报提供指导。 该项目汇集了一个跨学科团队,结合了水文气候科学和统计机器学习的专业知识,为气候诊断和预测创建了新的平台。 加强对气候系统的了解以及稳健而准确的季节性预报会产生更广泛的影响,对整个社会产生广泛的影响。例如,更好的季节性预测将使水资源管理者能够做出可持续的水资源分配决策。这个 TRIPODS+CLIMATE 项目将开发新颖的机器学习和网络估计方法,用于分析一系列空间和时间尺度的气候系统,以了解气候变率和变化模式,并探索其对区域水文气候学的预测能力。该项目的两个主要目标如下。 目标 1:开发新颖的分类和回归工具,以解释高度相关的特征或协变量、高维环境中的非线性相互作用项以及气候观测中的非平稳性。这些工具将用于在存在不断变化的动态和非平稳性的情况下,利用多维气候模式和特征向量来改进区域降水的季节到次季节预测。目标 2:开发网络识别方法,利用机器学习和统计学的最新进展,并能够解释气候数据的非平稳性和有限时间范围。网络表示将用于分析所学习的依赖关系的结构和动态,以对其进行物理背景化和解释,并量化气候模式的变化模式及其区域预测能力。 重点将放在西太平洋动力学上,该动力学最近发现了半球间双向连接,有望在美国西南部和世界其他地区提供更早、更准确的季节到次季节预报。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localizing Changes in High-Dimensional Regression Models
本地化高维回归模型中的变化
Prediction in the Presence of Response-Dependent Missing Labels
存在依赖于响应的缺失标签时的预测
Localizing Changes in High-Dimensional Regression Models
本地化高维回归模型中的变化
Neumann Networks for Linear Inverse Problems in Imaging
用于成像中线性逆问题的诺伊曼网络
Graph-Guided Regularization for Improved Seasonal Forecasting
用于改进季节性预测的图形引导正则化
  • DOI:
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stevens A.; R. Willett
  • 通讯作者:
    R. Willett
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Willett其他文献

Building a stable classifier with the inflated argmax
使用膨胀的 argmax 构建稳定的分类器
  • DOI:
    10.1007/978-981-16-5237-0_9
  • 发表时间:
    2024-05-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jake A. Soloff;Rina Foygel Barber;Rebecca Willett
  • 通讯作者:
    Rebecca Willett
Multi-Frequency Progressive Refinement for Learned Inverse Scattering
学习逆散射的多频率渐进细化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Owen Melia;Olivia Tsang;Vasileios Charisopoulos;Y. Khoo;Jeremy Hoskins;Rebecca Willett
  • 通讯作者:
    Rebecca Willett
Nonparametric Bayesian Dictionary Learning and Count and Mixture Modeling
非参数贝叶斯字典学习以及计数和混合建模
APS/CNM Workshop 2 Challenges in Integrating Data Science, Computational Modeling, and Advanced Characterization
APS/CNM 研讨会 2 集成数据科学、计算建模和高级表征的挑战
  • DOI:
    10.1007/s12206-019-0824-x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Konrad Kording;Brian Toby;Ben Blaiszik;David Skinner;Nicola Ferrier;Rebecca Willett;Ankit Agrawal;Robert Fischetti;E. L. Baxter;K. Michalska;G. Babnigg;Kemin Tan;Changsoo Chang;B. Nocek;Hui Li;C. Hatzos;M. Molitsky;R. Alkire;Youngchang Kim;Andrzej Joachimiak;Marc Allaire;Robin Owen;D. Sherrell;Danny Axford;J. Wierman;Ti;M. Tate;H. Philipp;V. Elser;S. Gruner;R. Hennings;J. Beeman;J. Ding;A. Drobizhev;B. Fujikawa;K. Han;S. Han;G. Karapetrov;Y. Kolomensky;V. Novosad;T. O’Donnell;J. Ouellet;J. Pearson;B. Sheff;V. Singh;S. Wagaarachchi;J. Wallig;G. Wang;V. Yefremenko;E. Shirokoff;F. Carter;T. Khaire;R. McGeehan;W. Quan;R. Thakur;SuperSpec Collaboration;D. Fike;Catherine V. Rose;Jocelyn Richardson;Jeffrey G. Catalano;Matthew Newville;A. Lanzirotti;S. Webb
  • 通讯作者:
    S. Webb
Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
超越集合平均值:利用气候模型集合进行次季节预测
  • DOI:
    10.48550/arxiv.2211.15856
  • 发表时间:
    2022-11-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Orlova;Haokun Liu;Raphael Rossellini;B. Cash;Rebecca Willett
  • 通讯作者:
    Rebecca Willett

Rebecca Willett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Willett', 18)}}的其他基金

NSF Student Travel Grant for 2022 UChicago AI+Science Summer School (UChicago AI+Sci SS)
2022 年芝加哥大学人工智能科学暑期学校 (UChicago AI Sci SS) NSF 学生旅费补助
  • 批准号:
    2229623
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2022 UChicago AI+Science Summer School (UChicago AI+Sci SS)
2022 年芝加哥大学人工智能科学暑期学校 (UChicago AI Sci SS) NSF 学生旅费补助
  • 批准号:
    2229623
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023109
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Automatic, Adaptive Detection and Description of Change in Time-Lapse Imagery
ATD:协作研究:延时图像变化的自动、自适应检测和描述
  • 批准号:
    1925101
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934637
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Automatic, Adaptive Detection and Description of Change in Time-Lapse Imagery
ATD:协作研究:延时图像变化的自动、自适应检测和描述
  • 批准号:
    1925101
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
  • 批准号:
    1839338
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
  • 批准号:
    1319927
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Data-Starved Inference on Point Processes
职业:点过程上的数据匮乏推理
  • 批准号:
    0643947
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于各向异性ReS2的1T/2H二维范德瓦尔斯异质结的可控构筑及其光电性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于熔融盐法可控构建多功能双位点TiO2/Al-ReS2及其光催化降解全氟化合物机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辉钼矿结构MoS2-ReS2固溶体的热力学性质研究及其对铼富集成矿的制约
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
n-HA/Res/CS微球在骨质疏松性骨折中的作用机制研究
  • 批准号:
    82172442
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
RES2(Polygalacturonase)参与四分体果胶壁降解影响温敏不育系育性转变机制的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:

相似海外基金

TRIPODS+X:RES:Collaborative Research: Multi-Level Graph Representation for Exploring Big Data
TRIPODS X:RES:协作研究:探索大数据的多级图表示
  • 批准号:
    1839167
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES:Collaborative Research: Improving Templated Microstructures via Topological Data Analysis
TRIPODS X:RES:协作研究:通过拓扑数据分析改进模板化微观结构
  • 批准号:
    1839267
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Tripods+X:Res: Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
  • 批准号:
    1839294
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
  • 批准号:
    1839217
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research:Privacy-Preserving Genomic Data Analysis
TRIPODS X:RES:协作研究:隐私保护基因组数据分析
  • 批准号:
    1839283
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了