TRIPODS+X:RES: Collaborative Research:Privacy-Preserving Genomic Data Analysis

TRIPODS X:RES:协作研究:隐私保护基因组数据分析

基本信息

  • 批准号:
    1839283
  • 负责人:
  • 金额:
    $ 7.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

Much of modern day medicine is driven by genomic data, with the size and complexity of genomic datasets increasing at a rapid pace. Naturally, any use of human genomic data raises grave privacy concerns. This is because the power to query multiple genomic databases with seemingly innocuous questions such as "Do you contain any genome that has mutation X?" is enough to determine whether an individual's genome is present in the databases. Such re-identification attacks have raised a germane question: can one implement privacy protection for genomic data so that meaningful data analysis remains possible, but attacks such as these become impossible? The main idea of this project is to achieve this goal by making and exploiting statistical assumptions about the data, such that if the assumptions are false, data analysis will suffer but privacy will not. The project will also generate curricular material for a graduate class at the intersection of data privacy, machine learning, and genomics.The project considers three major research questions on preserving privacy in the context of genomic data. The notion of privacy used is differential privacy, which provably protects against re-identification attacks, and has found large-scale adoption in both academia and industry. The first research question is the estimation of allele frequencies, and of linkage disequilibrium, while preserving individual privacy. Given a set of human genomes, the objective of allele frequency estimation is to estimate the frequency of the different mutations across various locations in the chromosome. Linkage disequilibrium is the deviation from independence for pairs of alleles. The second question is haplotype sampling. Haplotypes correspond to sets of genetic variations (typically extending over multiple genes), that tend to be inherited together. In haplotype sampling, the objective is to generate synthetic haplotypes given a data set of human genomes, while respecting biology behind these genetic variations. Finally, the project aims to estimate pathogenic variants of breast cancer genes. Variants of the BRCA 1 and 2 genes are known to be pathogenic for breast cancer. However, a lot of the variants are still not classified as pathogenic / non-pathogenic and are VUSs - Variants of Unknown Significance. The objective is to develop a privacy-preserving system to gather statistics about the VUSs from individually sequenced genes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代医学的大部分都是由基因组数据驱动的,基因组数据集的规模和复杂性正在快速增加。当然,任何人类基因组数据的使用都会引起严重的隐私问题。这是因为能够使用看似无害的问题查询多个基因组数据库,例如“您是否包含任何具有 X 突变的基因组?”足以确定数据库中是否存在个体的基因组。这种重新识别攻击提出了一个密切相关的问题:是否可以对基因组数据实施隐私保护,以便有意义的数据分析仍然可能,但此类攻击变得不可能?该项目的主要思想是通过对数据进行统计假设来实现这一目标,如果假设错误,数据分析将受到影响,但隐私不会受到影响。该项目还将为研究生班提供数据隐私、机器学习和基因组学交叉领域的课程材料。该项目考虑了在基因组数据背景下保护隐私的三个主要研究问题。使用的隐私概念是差分隐私,它被证明可以防止重新识别攻击,并且已在学术界和工业界得到大规模采用。第一个研究问题是估计等位基因频率和连锁不平衡,同时保护个人隐私。给定一组人类基因组,等位基因频率估计的目标是估计染色体中不同位置的不同突变的频率。连锁不平衡是等位基因对独立性的偏差。第二个问题是单倍型抽样。单倍型对应于一组遗传变异(通常延伸到多个基因),它们往往一起遗传。 在单倍型采样中,目标是根据人类基因组数据集生成合成单倍型,同时尊重这些遗传变异背后的生物学。最后,该项目旨在估计乳腺癌基因的致病变异。已知 BRCA 1 和 2 基因的变异可导致乳腺癌。然而,许多变异仍然没有被分类为致病性/非致病性,而是 VUS——意义不明的变异。目标是开发一个隐私保护系统,从单独测序的基因中收集有关 VUS 的统计数据。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vishesh Karwa其他文献

CAUSAL INFERENCE IN TRANSPORTATION SAFETY STUDIES : COMPARISON OF THE POTENTIAL OUTCOMES AND CAUSAL BAYESIAN NETWORKS
运输安全研究中的因果推理:潜在结果与因果贝叶斯网络的比较
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishesh Karwa;A. Slavkovic;T. Eric;Donnell
  • 通讯作者:
    Donnell
DERGMs: Degeneracy-restricted exponential random graph models
DERGM:简并限制指数随机图模型
  • DOI:
    10.1080/10618600.2012.679240
  • 发表时间:
    2016-12-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishesh Karwa;Sonja Petrović;Denis Bajic
  • 通讯作者:
    Denis Bajic
Exact tests for stochastic block models
随机块模型的精确检验
  • DOI:
    10.1109/ijcnn.2007.4371222
  • 发表时间:
    2016-12-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishesh Karwa;D. Pati;S. Petrovi'c;Liam Solus;N. Alexeev;Matej Raič;Dane Wilburne;Robert Williams;Bowei Yan
  • 通讯作者:
    Bowei Yan
Causal inference in transportation safety studies: Comparison of potential outcomes and causal diagrams
运输安全研究中的因果推断:潜在结果和因果图的比较
  • DOI:
    10.1214/10-aoas440
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vishesh Karwa;Aleks;ra Slavkovi'c;ra;Eric T. Donnell
  • 通讯作者:
    Eric T. Donnell
A Privacy Preserving Algorithm to Release Sparse High-dimensional Histograms
一种发布稀疏高维直方图的隐私保护算法
  • DOI:
    10.29012/jpc.657
  • 发表时间:
    2018-12-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bai Li;Vishesh Karwa;A. Slavkovic;R. Steorts
  • 通讯作者:
    R. Steorts

Vishesh Karwa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vishesh Karwa', 18)}}的其他基金

TRIPODS+X:RES: Collaborative Research:Privacy-Preserving Genomic Data Analysis
TRIPODS X:RES:协作研究:隐私保护基因组数据分析
  • 批准号:
    1947919
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant

相似国自然基金

基于各向异性ReS2的1T/2H二维范德瓦尔斯异质结的可控构筑及其光电性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于熔融盐法可控构建多功能双位点TiO2/Al-ReS2及其光催化降解全氟化合物机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辉钼矿结构MoS2-ReS2固溶体的热力学性质研究及其对铼富集成矿的制约
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
n-HA/Res/CS微球在骨质疏松性骨折中的作用机制研究
  • 批准号:
    82172442
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
RES2(Polygalacturonase)参与四分体果胶壁降解影响温敏不育系育性转变机制的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:

相似海外基金

TRIPODS+X:RES:Collaborative Research: Multi-Level Graph Representation for Exploring Big Data
TRIPODS X:RES:协作研究:探索大数据的多级图表示
  • 批准号:
    1839167
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES:Collaborative Research: Improving Templated Microstructures via Topological Data Analysis
TRIPODS X:RES:协作研究:通过拓扑数据分析改进模板化微观结构
  • 批准号:
    1839267
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Tripods+X:Res: Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
  • 批准号:
    1839294
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
  • 批准号:
    1930049
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
  • 批准号:
    1839217
  • 财政年份:
    2018
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了