Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
基本信息
- 批准号:1853002
- 负责人:
- 金额:$ 9.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic theory describes the dynamics of a large number of particles, such as flows of air particles passing an airfoil, or neutrons' collisions in a nuclear reactor. In a statistical manner, the kinetic description bridges the micro-scale modeling of motion of particles by Newtonian mechanics and the macro-scale modeling by continuum fluid mechanics. This research project aims to develop novel mathematical methods to quantitatively characterize these multi-scale models. The investigation focuses on the motion of rarefied gas, neutrons, electrons, and ions, in spatially bounded regions under the influence of the surrounding environment. Its applications range from high-tech fields like semi-conductors or nuclear fusion, to daily-life devices like water sprays or fluorescent lamps.Specifically, this project concentrates on the hydrodynamic limit of the Boltzmann equation or transport equation, i.e. how the solution varies asymptotically when a small parameter, either the Knudsen number or the Strouhal number, approaches zero. In bounded domains, kinetic boundary corrections (i.e. boundary layers), play a crucial role. The investigator intends to justify the validity of the asymptotic approximation in the presence of singular boundary layers. Moreover, the initial-boundary interactions and nonlinear effects are taken into consideration. To tackle the non-standard asymptotic expansions, the investigator seeks to develop general theories of geometric correction in boundary layers, rescaled remainder estimates, Milne regularity analysis, non-local energy methods, and boundary layers decomposition. These techniques can be further applied to Vlasov systems and magnetohydrodynamical (MHD) equations. Also, the rigorous derivations of fractional diffusion and stochastic diffusion are involved.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论描述了大量颗粒的动力学,例如经过翼型的空气颗粒流或中子在核反应堆中的碰撞。动力学描述以统计方式桥接了牛顿力学对粒子运动的微尺度建模,以及通过连续流体力学的宏观尺度建模。该研究项目旨在开发新颖的数学方法,以定量地表征这些多尺度模型。该研究的重点是在周围环境的影响下在空间界面区域内的稀有气体,中子,电子和离子的运动。 Its applications range from high-tech fields like semi-conductors or nuclear fusion, to daily-life devices like water sprays or fluorescent lamps.Specifically, this project concentrates on the hydrodynamic limit of the Boltzmann equation or transport equation, i.e. how the solution varies asymptotically when a small parameter, either the Knudsen number or the Strouhal number, approaches zero.在有限的域中,动力学边界校正(即边界层)起着至关重要的作用。研究人员打算在存在奇异边界层的情况下证明渐近近似的有效性是合理的。此外,考虑了初始的相互作用和非线性效应。为了应对非标准的渐近扩展,研究者试图在边界层中开发一般的几何校正理论,剩余的估计值,米尔恩规律性分析,非本地能量方法和边界层分解。这些技术可以进一步应用于Vlasov系统和磁流失动力学(MHD)方程。同样,涉及分数扩散和随机扩散的严格衍生。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic analysis of unsteady neutron transport equation
非定常中子输运方程的渐近分析
- DOI:10.1002/mma.5531
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Wu, Lei
- 通讯作者:Wu, Lei
Dynamics and stability of sessile drops with contact points
带接触点的固着液滴的动力学和稳定性
- DOI:10.1016/j.jde.2020.10.012
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Tice, Ian;Wu, Lei
- 通讯作者:Wu, Lei
Diffusive Limit of Transport Equation in 3D Convex Domains
3D凸域中输运方程的扩散极限
- DOI:10.1007/s42543-020-00032-4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wu, Lei
- 通讯作者:Wu, Lei
Dynamics and Stability of Surface Waves with Bulk-Soluble Surfactants
体溶性表面活性剂表面波的动力学和稳定性
- DOI:10.1007/s10440-018-0203-0
- 发表时间:2019
- 期刊:
- 影响因子:1.6
- 作者:Tice, Ian;Wu, Lei
- 通讯作者:Wu, Lei
Hydrodynamic Limit of 3dimensional Evolutionary Boltzmann Equation in Convex Domains
凸域中三维演化玻尔兹曼方程的流体力学极限
- DOI:10.1137/20m1375735
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Wu, Lei;Ouyang, Zhimeng
- 通讯作者:Ouyang, Zhimeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Wu其他文献
The RISCIS-PK substudy: An analysis of pharmacokinetics, pharmacodynamics, and impact on axonal degradation of riluzole in patients with traumatic cervical spinal cord injury enrolled in the RISCIS Phase III Randomized Controlled Trial.
RISCIS-PK 子研究:对参加 RISCIS III 期随机对照试验的创伤性颈脊髓损伤患者的药代动力学、药效学以及利鲁唑对轴突降解的影响进行分析。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.2
- 作者:
D. Chow;Ashley Nguyen;J. Park;Lei Wu;Elizabeth G. Toups;J. Harrop;J. Guest;Karl M. Schmitt;B. Aarabi;M. Fehlings;M. Boakye;Robert G. Grossman - 通讯作者:
Robert G. Grossman
Harnessing bulging or sloshing modes to design locally resonant liquid-solid metamaterials
利用膨胀或晃动模式设计局部谐振液固超材料
- DOI:
10.1016/j.jsv.2021.116280 - 发表时间:
2021-10 - 期刊:
- 影响因子:4.7
- 作者:
Lei Wu;Yueming Li - 通讯作者:
Yueming Li
Aggregated demand-side response in residential distribution areas based on tiered incentive prices
基于分级激励价格的住宅分布区域需求侧总体响应
- DOI:
10.3389/fenrg.2024.1352356 - 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Donglail Tang;Qiang Zhang;Tiefeng Ma;Yuan Ou;Lei Wu;Jizhong Tang - 通讯作者:
Jizhong Tang
Modeling and State-of-Charge Coestimation for a Lithium-ion Battery Based on a Class of Nonlinear Time Series Model
基于一类非线性时间序列模型的锂离子电池建模与荷电状态协同估计
- DOI:
10.1109/icnepe60694.2023.10429512 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhi Zhang;Shuhua Bai;Baiqing He;Jinliang Huang;Lei Wu;Wenzhan Zhang - 通讯作者:
Wenzhan Zhang
Discovery of a genome-wide significant locus associated with antidepressant response in Han Chinese population.
发现与中国汉族人群抗抑郁反应相关的全基因组显着位点。
- DOI:
10.1016/j.ajp.2022.103294 - 发表时间:
2022 - 期刊:
- 影响因子:9.5
- 作者:
Jing Yuan;Chu;Li Xu;Lu Wang;Yan Zhang;Yujun Wei;Xin Wang;Yue Xu;Li;Xiao;Lei Wu;Chuanyuan Kang;Jian Zhong Yang - 通讯作者:
Jian Zhong Yang
Lei Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Wu', 18)}}的其他基金
CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
- 批准号:
1906532 - 财政年份:2019
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
- 批准号:
1906780 - 财政年份:2019
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
- 批准号:
1915756 - 财政年份:2019
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
Collaborative Research: Real-time Investigations of Anisotropic Nanoparticle Aggregation and Consequences for Deposition in Porous Media
合作研究:各向异性纳米颗粒聚集及其在多孔介质中沉积的后果的实时研究
- 批准号:
1836905 - 财政年份:2019
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
CO2-Enhanced Gas Recovery (CO2-EGR): Multi-Scale Simulation of Rarefied Gas Flows in Porous Media
CO2 增强气体回收 (CO2-EGR):多孔介质中稀薄气体流动的多尺度模拟
- 批准号:
EP/R041938/1 - 财政年份:2018
- 资助金额:
$ 9.14万 - 项目类别:
Research Grant
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
- 批准号:
1810721 - 财政年份:2018
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
US Ignite: Focus Area 1: An Integrated Reconfigurable Control and Self-Organizing Communication Framework for Advanced Community Resilience Microgrids
US Ignite:重点领域 1:用于高级社区弹性微电网的集成可重构控制和自组织通信框架
- 批准号:
1647135 - 财政年份:2017
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
- 批准号:
1635339 - 财政年份:2017
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
CAREER: Stochastic Multiple Time-Scale Co-Optimized Resource Planning of Future Power Systems with Renewable Generation, Demand Response, and Energy Storage
职业:可再生能源发电、需求响应和储能的未来电力系统的随机多时间尺度协同优化资源规划
- 批准号:
1254310 - 财政年份:2013
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
相似国自然基金
趋化模型自由边界问题解的渐近性分析
- 批准号:12301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
理想磁流体力学中的自由边界问题
- 批准号:12371225
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
三维斑块生长自由边界问题稳态解的稳定性研究
- 批准号:12301246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
移动环境中非局部扩散自由边界问题的传播动力学
- 批准号:12361039
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
高维流体力学方程组的自由边界问题研究
- 批准号:12371211
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 9.14万 - 项目类别:
Research Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 9.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
- 批准号:
20K03688 - 财政年份:2020
- 资助金额:
$ 9.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic Problems with Boundary Effect in Kinetic Theory
动力学理论中边界效应的渐近问题
- 批准号:
1810721 - 财政年份:2018
- 资助金额:
$ 9.14万 - 项目类别:
Standard Grant
Existence of solutions of free boundary problems of two-phase fluids and their asymptotic behaviors
两相流体自由边界问题解的存在性及其渐近行为
- 批准号:
17K17804 - 财政年份:2017
- 资助金额:
$ 9.14万 - 项目类别:
Grant-in-Aid for Young Scientists (B)