Collaborative Research: Predicting post-wildfire sedimentation of reservoirs: probabilistic modeling of debris flow generation and downstream sediment routing

合作研究:预测水库野火后沉积:泥石流生成和下游沉积路径的概率模型

基本信息

项目摘要

In the United States, forested lands provide water supply for two-thirds of the population. However, in the decades since most water infrastructure was constructed in the western U.S., the burned area, frequency, and severity of wildfires has increased considerably. While wildfires can have short-term impacts on the quantity and quality of water supply, the erosion that occurs after severe burns can also deliver significant amounts of sediment to rivers and downstream reservoirs, reducing the long-term storage capacity of water supplies. Further, with projected future increases in wildfire, there will be increases in river sediment. Thus, in this project the researchers will develop new computer-based modeling tools capable of identifying and quantifying the risk that post-wildfire erosion poses to downstream water infrastructure. The first application of this modeling framework will be the water supply reservoirs throughout Utah, one of the driest states in the U.S., where the vulnerability of each reservoir will be quantified as to the erosion and sedimentation risk posed by wildfire. Similar to dammed reservoirs across the nation, sedimentation in Utah reservoirs is a growing concern for aging water infrastructure, even before accounting for the projected increases in future wildfire. Finally, the researchers will integrate their model into online, open-source programs, making these resources available to any person or agency interested in applying the model to other states or regions. The deliverables of this project will provide critical information and tools for improved and more targeted forest management, help identify and protect vulnerable water resources, and address crucial knowledge gaps for predicting downstream impacts from post-wildfire erosion. Collaborating across two universities, this project will provide support for one post-doctoral researcher (PI Murphy), two PhD students, and a minimum of six undergraduate students to train and develop their skills in hydrology, geomorphology, data analysis and management, and science communication. This project will advance fundamental knowledge critical for predicting the locations and timing of post-wildfire sediment delivery to downstream water infrastructure. The researchers will link new and existing models that: 1) predict the locations and magnitudes of post-wildfire erosion, 2) route post-wildfire sediment inputs downstream through river networks in a physics-based and hydro-geomorphically sensitive manner, and 3) determine a range of potential volumetric sediment inputs to downstream reservoirs under a range of wildfire conditions. Applying this new modeling framework to the 133 major reservoirs throughout Utah, this project will answer four key research questions: 1) Which water supply reservoirs in Utah are most vulnerable to post-wildfire erosion? 2) What is the time lag between occurrence of a wildfire and loss of reservoir storage downstream? 3) Which landscape, fire, hydrologic, and vegetation characteristics exert the strongest control on the upstream storage vs. delivery of post-fire sediment to reservoirs? 4) What landscape, fire and river network attributes control the relative increase in post-wildfire sediment yields above background yields? Through this analysis, the researchers will specifically assess the influence of sediment connectivity on reservoir vulnerability, as well as the contribution of coarse sediment inputs to the reductions in reservoir storage over longer transport timescales. Given the complex ownership and management of dams, they will engage a stakeholder advisory group that spans the diverse range of ownership and includes public utilities departments, state and federal forest management agencies, and dam operators. Further, they will work with the Community Surface Dynamics Modeling System (CSDMS) to integrate their models into open-source platforms, and create a public platform to host the project datasets, educational materials, technical reports, and publications. This project represents research at the frontier of integrated geosciences, and this new modeling framework fills a critical gap regarding the tools needed to assess urgent societal concerns regarding wildfire and water security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,林地为三分之二的人口提供供水。但是,在美国西部建造的大多数水基础设施以来,野火的燃烧面积,频率和严重程度已大大增加。虽然野火可能会对供水的数量和质量产生短期影响,但在严重燃烧后发生的侵蚀也可以向河流和下游水库提供大量的沉积物,从而降低了供水的长期存储能力。此外,随着野火未来的预计增加,河流沉积物将会增加。因此,在这个项目中,研究人员将开发新的基于计算机的建模工具,能够识别和量化后火灾后侵蚀对下游水基础设施构成的风险。该建模框架的第一个应用是整个犹他州的供水水库,犹他州是美国最干燥的州之一,在这里,每个储层的脆弱性将被量化,以介绍野火带来的侵蚀和沉积风险。与全国各地的水库类似,犹他州水库的沉积物对水基础设施的老化也日益关注,甚至在考虑预计未来野火的预计增加之前。最后,研究人员将将其模型集成到在线开源计划中,使这些资源可用于有兴趣将模型应用于其他州或地区的任何人或代理商。该项目的可交付成果将提供关键的信息和工具,以改善和更有针对性的森林管理,有助于识别和保护脆弱的水资源,并解决重要的知识差距,以预测后喷火后的下游影响。该项目将在两所大学合作,为一名博士后研究员(PI Murphy),两名博士生和至少六名本科生提供支持,以培训和发展他们在水文学,地貌,数据分析和管理以及科学沟通方面的技能。该项目将促进基本知识,对于预测野火后沉积物到下游水基础设施的位置和时机至关重要。研究人员将将新的和现有的模型联系起来:1)预测野火后侵蚀的位置和幅度,2)野火后野火沉积物的路线通过河网下游以物理性和水力地球形态敏感的方式下游输入,而3)确定潜在的大量沉积物对下游储层的潜在范围内的范围wildfire resse resse wildfire ress a doundfire ress a doundfire。该项目将这个新的建模框架应用于整个犹他州的133个主要水库,将回答四个关键的研究问题:1)犹他州哪些供水水库最容易受到野后火灾的侵蚀? 2)野火的发生与下游储层存储损失之间的时间滞后是多少? 3)哪种景观,火灾,水文和植被特征对上游存储与射击后沉积物的输送对水库的运输产生最强的控制? 4)哪些景观,火灾和河流网络属性控制野火后沉积物的相对增加产量高于背景收益?通过这项分析,研究人员将特别评估沉积物连通性对储层脆弱性的影响,以及粗沉积物输入对较长传输时间尺度储层存储减少的贡献。鉴于大坝的复杂所有权和管理,他们将与一个利益相关者咨询小组互动,该咨询小组涵盖各种所有权,包括公用事业部门,州和联邦森林管理机构以及大坝运营商。此外,他们将与社区表面动态建模系统(CSDM)合作,将其模型集成到开源平台中,并创建一个公共平台来托管项目数据集,教育材料,技术报告和出版物。该项目代表了综合地球科学领域的研究,这个新的建模框架填补了关于评估有关野火和水安全的紧急社会问题所需工具的关键空白。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来进行评估的值得支持的,这是值得的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulated Dynamics of Mixed Versus Uniform Grain Size Sediment Pulses in a Gravel‐Bedded River
  • DOI:
    10.1029/2021jf006194
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ahammad;J. Czuba;A. Pfeiffer;B. Murphy;P. Belmont
  • 通讯作者:
    M. Ahammad;J. Czuba;A. Pfeiffer;B. Murphy;P. Belmont
Control of flow sequence and spatial distribution of debris flow input on river network modeling
河网建模中泥石流输入的流序和空间分布控制
USUAL Watershed Tools: A new geospatial toolkit for hydro-geomorphic delineation
USUAL 流域工具:用于水文地貌描绘的新地理空间工具包
  • DOI:
    10.1016/j.envsoft.2022.105576
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    David, Scott R.;Murphy, Brendan P.;Czuba, Jonathan A.;Ahammad, Muneer;Belmont, Patrick
  • 通讯作者:
    Belmont, Patrick
Watershed scale impact of upstream sediment supply on the mainstem of a river network
上游泥沙供应对河网干流的流域尺度影响
NetworkSedimentTransporter: A Landlab component for bed material transport through river networks
  • DOI:
    10.21105/joss.02341
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Pfeiffer;K. Barnhart;J. Czuba;E. Hutton
  • 通讯作者:
    A. Pfeiffer;K. Barnhart;J. Czuba;E. Hutton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Czuba其他文献

Jonathan Czuba的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Czuba', 18)}}的其他基金

Understanding the physical processes controlling the amount of fine sediment and gravel embeddedness in streambeds
了解控制河床细粒沉积物和砾石嵌入量的物理过程
  • 批准号:
    2243003
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Role of lithologic variability in controlling downstream channel response to sediment pulses
合作研究:岩性变异在控制下游河道对沉积物脉冲响应中的作用
  • 批准号:
    2138505
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
    62203348
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
  • 批准号:
    51907151
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于分布协作式移动边缘计算的VR视频自适应传输优化研究
  • 批准号:
    61901250
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
面向人机共融协作的柔性双臂机器人安全作业机理研究
  • 批准号:
    51575157
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343204
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343203
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了