CAREER: Extracting principles of neural computation from large scale neural recordings through neural network theory and high dimensional statistics
职业:通过神经网络理论和高维统计从大规模神经记录中提取神经计算原理
基本信息
- 批准号:1845166
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent technological advances now enable recordings of thousands of neurons during complex behaviors. Such experimental capabilities could potentially reveal how the brain encodes sensations, forms memories, learns tasks, makes decisions, and generates motor actions. However, there exist major obstacles to attaining a scientific understanding of how the psychological capabilities of the mind emerge from the biological wetware of the brain. First, data analytic methods are not adequate to make sense of the massive datasets currently being gathered from the brain. Second, theoretical methods are not adequate for both optimally designing large-scale neural recordings, and bridging scales from the collective biophysics of many neurons to psychological processes underlying sensations, thoughts and actions. This project will develop novel data analytic and theoretical methods to extract a conceptual understanding of how the brain gives rise to cognition. These methods will be tested in large-scale recordings from many experimental labs studying perception, memory, learning, decision making and motor control. They will also be applied to developing better learning protocols and neural prosthetic devices.This project will pursue three overarching aims. It will build on advances in high dimensional statistics to develop a theory of when and how subsets of neurons reflect the collective dynamics of the much larger unobserved circuit in which they are embedded. This theory will provide quantitative guidance for the efficient design of future large-scale recording experiments. Second, it will build on advances in deep learning to develop algorithmic methods for extracting a conceptual understanding of how complex neural networks solve tasks. These algorithmic methods will elucidate which aspects of network connectivity and dynamics are essential to understanding how neural circuits perform their computations, thereby providing guidance for what to measure in future neuroscience experiments. Finally, it will advance theories of neural network learning to better understand how the structure of prior experience determines learned neural connectivity, and how this learning process can be optimized. These general theoretical advances will be refined and tested in specific, close experimental collaborations, involving: identifying feedback control laws in motor cortex, finding signatures of attractor dynamics in the hippocampal memory circuits, understanding the neural algorithms for perception in the retina and decision making in prefrontal cortex, and developing frameworks for understanding rapid rodent learning built upon prior experiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现在的技术进步现在可以在复杂行为期间记录成千上万个神经元。 这种实验能力可能有可能揭示大脑如何编码感觉,形成记忆,学习任务,做出决策并产生运动动作。 但是,从大脑的生物湿软件中出现了对思想的心理能力如何出现的科学理解的主要障碍。首先,数据分析方法不足以理解目前从大脑中收集的大规模数据集。其次,理论方法对于最佳设计大规模神经记录以及从许多神经元的集体生物物理学到感官,思想和动作的心理过程的桥接量表都不足以进行。 该项目将开发新的数据分析和理论方法,以提取对大脑如何产生认知的概念理解。这些方法将在许多实验实验室的大规模记录中进行测试,这些实验实验室研究感知,记忆,学习,决策和运动控制。它们还将应用于制定更好的学习方案和神经假体设备。该项目将追求三个总体目标。它将建立在高维统计数据中的进步基础上,以发展神经元子集的何时以及如何反映其嵌入它们的较大未观察到的电路的集体动力学。该理论将为未来大规模记录实验的有效设计提供定量指导。其次,它将以深度学习的进步为基础,以开发算法方法来提取对复杂神经网络如何解决任务的概念理解。这些算法方法将阐明网络连接性和动态的哪些方面对于了解神经回路如何执行其计算至关重要,从而为未来的神经科学实验中的测量提供了指导。最后,它将推进神经网络学习的理论,以更好地了解先前经验的结构如何决定学习的神经连接性以及如何优化学习过程。这些一般理论的进步将通过特定的,紧密的实验合作进行完善和测试,涉及:确定运动皮层中的反馈控制法律,在海马记忆环路中找到吸引者动态的特征,了解在视网膜中的神经算法,了解视网膜中的感知和在培养前型群体中的经验,并在前期型号中培养框架,并在培养前期的框架中培养了框架,并在范围内进行了培训。使命,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估值得支持的。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Stanislav Fort;G. Dziugaite;Mansheej Paul;Sepideh Kharaghani;Daniel M. Roy;S. Ganguli
- 通讯作者:Stanislav Fort;G. Dziugaite;Mansheej Paul;Sepideh Kharaghani;Daniel M. Roy;S. Ganguli
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Niru Maheswaranathan;Alex H. Williams;Matthew D. Golub;S. Ganguli;David Sussillo
- 通讯作者:Niru Maheswaranathan;Alex H. Williams;Matthew D. Golub;S. Ganguli;David Sussillo
Enhancing Associative Memory Recall and Storage Capacity Using Confocal Cavity QED
- DOI:10.1103/physrevx.11.021048
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Brendan P. Marsh;Yudan Guo;Ronen M. Kroeze;S. Gopalakrishnan;S. Ganguli;Jonathan Keeling;B. Lev
- 通讯作者:Brendan P. Marsh;Yudan Guo;Ronen M. Kroeze;S. Gopalakrishnan;S. Ganguli;Jonathan Keeling;B. Lev
Understanding self-supervised Learning Dynamics without Contrastive Pairs
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Yuandong Tian;Xinlei Chen;S. Ganguli
- 通讯作者:Yuandong Tian;Xinlei Chen;S. Ganguli
Identifying Learning Rules From Neural Network Observables
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Aran Nayebi;S. Srivastava;S. Ganguli;Daniel L. K. Yamins
- 通讯作者:Aran Nayebi;S. Srivastava;S. Ganguli;Daniel L. K. Yamins
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surya Ganguli其他文献
Surya Ganguli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
白头翁汤正丁醇提取物下调念珠菌溶素表达并抑制阴道上皮细胞EGFR对其免疫识别所触发的MAPK通路治疗外阴阴道念珠菌病的机制研究
- 批准号:82374173
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于离子液体的膜蛋白质复合物提取新方法构建及在肝癌耐药机制研究中的应用
- 批准号:22304053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胶原自组装多孔膜的结构调控机制及其在氨基酸发酵提取中的应用研究
- 批准号:22378160
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
三维特征支持下的兼顾城-乡域适应知识迁移的建筑物精细提取
- 批准号:42371406
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于LiDAR提取植株三维参数的玉米关键生育时期精准监测
- 批准号:42301427
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Extracting computational principles governing the relation between brain activity and muscle activity that are conserved between rodents and primates
提取啮齿类动物和灵长类动物之间保守的大脑活动和肌肉活动之间关系的计算原理
- 批准号:
10224733 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Extracting computational principles governing the relation between brain activity and muscle activity that are conserved between rodents and primates
提取啮齿类动物和灵长类动物之间保守的大脑活动和肌肉活动之间关系的计算原理
- 批准号:
9983208 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Comprehensive research of creating a training environment and extracting design principles for instructional design basic skills
教学设计基本功实训环境营造及设计原理提炼综合研究
- 批准号:
23300305 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reconstruction of Metabolic Network for Extracting Design Principles of Natural Products
代谢网络重构提取天然产物设计原理
- 批准号:
20710156 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Extracting computational principles governing the relation between brain activity and muscle activity that are conserved between rodents and primates
提取啮齿类动物和灵长类动物之间保守的大脑活动和肌肉活动之间关系的计算原理
- 批准号:
9444175 - 财政年份:
- 资助金额:
$ 50万 - 项目类别: