CAREER: New Algorithmic Foundations for Online Scheduling

职业:在线调度的新算法基础

基本信息

  • 批准号:
    1844939
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

As massive low-cost computing resources become increasingly available, harnessing their power is crucial in modern science and engineering. One particular issue involves scheduling: what is the most effective way to assign resources, say computing cycles, to tasks in order to ensure good performance? The scheduling problem is especially acute when little to nothing is known in advance about the tasks, including when they might arrive and how much compute time they may need; in such cases, dynamic allocation of resources is required. Over the past two decades, exciting advances in approaches for addressing these so-called on-line scheduling problems have emerged, but the field is still struggling to address the increasingly challenging scheduling environments found in modern computing clusters. This project aims to develop new methods to design and analyze online scheduling algorithms systematically with the aid of widely used optimization techniques, and as a result to potentially resolve some key open questions in online scheduling. The research findings will likely provide an alternative method of educating students on scheduling in a broad context, which will have a significant impact on the computer science curriculum. This project will also involve mentoring students and disseminating the research outcomes through workshops, writing tutorials, and developing new course materials. At a more technical level, this project intends to investigate the effectiveness of online scheduling techniques for a variety of problems. The project's first objective is to develop new gradient-descent methods to design and analyze online-scheduling. The second objective is to use bin-packing to study fundamental admission-control problems, and to develop new algorithmic tools when pre-emption is allowed. The third research problem to be studied involves the development of fine-grained scheduling algorithms for low-dimensional scheduling environments. Surprisingly, despite recent advances, many existing algorithms are no match even for the simplest greedy algorithms in the low-dimensional case, which is common in practice. The fourth research goal is to refine the behavior of the online algorithms as the workload approaches the system limit, which is related to fundamental questions regarding the underlying analysis models. The last goal is to explore new models for scheduling jobs with inter-dependencies by taking advantage of large-scale scheduling environments to circumvent the intractability results that are commonly found in the traditional models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大量低成本计算资源的越来越多,利用其力量在现代科学和工程中至关重要。一个特定的问题涉及调度:将资源(例如计算周期)分配给任务以确保良好性能的最有效方法是什么? 当对任务的预先了解,包括何时到达以及可能需要多少计算时间时,调度问题尤其严重。在这种情况下,需要动态资源分配。 在过去的二十年中,已经出现了令人兴奋的解决这些所谓的在线调度问题的方法,但是该领域仍在努力解决现代计算集群中日益具有挑战性的调度环境。 该项目旨在开发新的方法,借助广泛使用的优化技术来系统地设计和分析在线调度算法,并因此可以解决在线计划中的一些关键开放问题。 研究发现可能会提供另一种方法,以在广泛的背景下对学生进行教育,这将对计算机科学课程产生重大影响。该项目还将涉及指导学生并通过研讨会,撰写教程和开发新课程材料来传播研究成果。在技​​术层面上,该项目打算研究在线调度技术针对各种问题的有效性。 该项目的第一个目标是开发新的渐变方法来设计和分析在线安排。第二个目标是使用bin包装来研究基本的录取控制问题,并在允许先发制的时候开发新的算法工具。要研究的第三个研究问题涉及开发低维度调度环境的细粒度调度算法。令人惊讶的是,尽管最近进步,但在低维情况下,即使对于最简单的贪婪算法来说,许多现有算法也不匹配,这在实践中很常见。第四个研究目标是在工作量接近系统限制时完善在线算法的行为,这与有关基础分析模型的基本问题有关。最后的目标是通过利用大规模的调度环境来探索与依赖性相互依存的新模型,以避免传统模型中常见的棘手性结果。该奖项反映了NSF的法定任务,并认为通过使用该基金会的知识分子和更广泛的影响来评估Criteria Criteria Criteria,并被认为是通过评估来通过评估来获得支持的。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Relational Gradient Descent Algorithm For Support Vector Machine Training
支持向量机训练的关系梯度下降算法
Faster Matchings via Learned Duals
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Dinitz;Sungjin Im;Thomas Lavastida;Benjamin Moseley;Sergei Vassilvitskii
  • 通讯作者:
    M. Dinitz;Sungjin Im;Thomas Lavastida;Benjamin Moseley;Sergei Vassilvitskii
Approximate Aggregate Queries Under Additive Inequalities
加性不等式下的近似聚合查询
Online Knapsack with Frequency Predictions
带有频率预测的在线背包
Online Learning and Bandits with Queried Hints
  • DOI:
    10.48550/arxiv.2211.02703
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Bhaskara;Sreenivas Gollapudi;Sungjin Im;Kostas Kollias;Kamesh Munagala
  • 通讯作者:
    Aditya Bhaskara;Sreenivas Gollapudi;Sungjin Im;Kostas Kollias;Kamesh Munagala
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sungjin Im其他文献

Online scheduling algorithms for average flow time and its variants
  • DOI:
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sungjin Im
  • 通讯作者:
    Sungjin Im
Online scalable scheduling for the lk-norms of flow time without conservation of work
无需工作保护的 lk 范数在线可扩展调度
  • DOI:
    10.1137/1.9781611973082.9
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Edmonds;Sungjin Im;Benjamin Moseley
  • 通讯作者:
    Benjamin Moseley
Coordination mechanisms from (almost) all scheduling policies
来自(几乎)所有调度策略的协调机制
Competitively scheduling tasks with intermediate parallelizability
具有中等并行性的竞争性调度任务
Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing
通过动态发布定价最大限度地减少相关机器上的最大流程时间

Sungjin Im的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sungjin Im', 18)}}的其他基金

Collaborative Research: AF: Small: Foundations of Algorithms Augmented with Predictions
合作研究:AF:小型:预测增强的算法基础
  • 批准号:
    2121745
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Algorithmic and Computational Frontiers of MapReduce for Big Data Analysis
AF:小型:协作研究:用于大数据分析的 MapReduce 算法和计算前沿
  • 批准号:
    1617653
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Multi-dimensional Scheduling and Resource Allocation in Data Centers
AF:中:协同研究:数据中心多维调度与资源分配
  • 批准号:
    1409130
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

光纤干涉型振动传感系统模式识别新智能算法的研究
  • 批准号:
    62305113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
地方债制度改革与企业劳动力投入:基于新《预算法》的准自然实验
  • 批准号:
    72272166
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于植被含水量和气象条件约束的卫星遥感火灾一氧化碳排放系数反演新算法
  • 批准号:
    42205135
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
  • 批准号:
    32270602
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
基于SCO方法和SDP/SOCP松弛技术的非凸二次约束二次规划新全局算法与应用研究
  • 批准号:
    12271485
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
  • 批准号:
    10449787
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
  • 批准号:
    10610492
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Optimized Multi-Metabolite Edited MRS at 3T
3T 时优化的多代谢物编辑 MRS
  • 批准号:
    10410779
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
  • 批准号:
    10376033
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了