Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
基本信息
- 批准号:10610492
- 负责人:
- 金额:$ 19.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-18 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAgreementAlgorithmic SoftwareAlgorithmsArchitectureAreaArtificial IntelligenceBarrett EsophagusBioinformaticsBiopsyBlood VesselsCalibrationCancer DetectionCategoriesClassificationClinicalClinical TrialsCommunitiesComputer AssistedComputer-Assisted DiagnosisDataDetectionDevelopmentDevelopment PlansDevicesDiagnosisDiagnosticDiscriminationDysplasiaEarly DiagnosisEarly treatmentEndoscopesEndoscopyEpidemiologyEsophageal AdenocarcinomaEsophageal NeoplasmsEsophageal mucous membraneEsophagusEthnic OriginEvaluationFundingFutureGoalsHigh grade dysplasiaHistopathologyImageImage AnalysisImaging technologyIncidenceInterviewK-Series Research Career ProgramsLearningLengthLesionLife StyleLightLongitudinal StudiesMachine LearningMalignant neoplasm of esophagusMalignant neoplasm of gastrointestinal tractMeasuresMentorsMethodologyMicroscopicModelingNeoplasmsNuclearObesityOptical BiopsyPatientsPerformancePositioning AttributePublic HealthQualitative ResearchQuality-Adjusted Life YearsROC CurveRaceRecommendationRecording of previous eventsResearchResearch PersonnelResearch TrainingResolutionResource-limited settingRiskRisk AssessmentRisk FactorsScreening for cancerSiteSmokingSpecificityStructureTablet ComputerTechniquesTechnologyTimeUnited StatesValidationWorkartificial intelligence algorithmautomated algorithmcancer diagnosiscareer developmentcellular imagingclassification algorithmclinical riskclinically relevantcommunity settingcostcost effectivecurative treatmentsdiagnostic accuracydiagnostic toolexperienceindexingmenmicroendoscopemicroendoscopyneoplasticnew technologynovelportabilitypreventprospectiverecruitresearch and developmentrisk prediction modelrisk stratificationsextechnology development
项目摘要
Project Summary/Abstract
Endoscopic surveillance of Barrett’s esophagus (BE) is recommended for early diagnosis and treatment of
neoplasia (i.e., esophageal adenocarcinoma and high-grade dysplasia). However, neoplasia is difficult to detect
on regular white-light endoscopy (WLE; sensitivity 64%), and 26% of neoplasia is missed with WLE alone. On
the other hand, confocal high-resolution microendoscopy (cHRME) is a low-cost, portable, reusable imaging
technology that provides microscopic “optical biopsy” images of the esophageal mucosa at the time of endoscopy
and has sensitivity of neoplasia detection upwards of 89% in the hands of experts. Despite these advantages,
the dissemination of cHRME is limited by the availability of expert microendoscopists capable of interpreting
these histopathology-like images. Artificial intelligence algorithms that automate interpretation of cHRME images
could bridge this gap by providing a real-time computer-assisted diagnosis to users in community-based BE
surveillance settings and reducing the need for expert review.
My objective is to develop and validate an automated software algorithm for real-time BE neoplasia detection
using cHRME. Furthermore, I will optimize the software algorithm by incorporating traditional clinical risk factors
for comprehensive risk stratification. Thus, I propose the following Specific Aims: Aim 1: Technology
Development: To develop a software algorithm that automates interpretation of cHRME images in BE neoplasia
detection. Aim 2. Technology Evaluation and Optimization: (a) To validate the cHRME automated software
algorithm for real-time neoplasia detection in BE; (b) To optimize the automated software algorithm by integrating
demographic, lifestyle, and clinical risk factors for comprehensive BE neoplasia detection. Aim 3. Technology
Acceptability: (a) To evaluate the acceptability and experiences of endoscopists using computer-assisted
diagnosis; (b) To assess feasibility of the automated software algorithm in clinical BE neoplasia detection.
The overarching goal of this proposal is to develop artificial intelligence algorithms that facilitate dissemination
of novel, low-cost technologies into community settings for rapid, real-time, accurate neoplasia detection. Future
longitudinal studies will focus on validation of comprehensive risk models that use macroscopic and microscopic
metrics to predict future neoplasia risk in BE patients undergoing surveillance endoscopy.
My long-term goal is to become an independently funded investigator in novel techniques for early
gastrointestinal cancer detection. I have assembled an experienced mentoring committee comprised of senior,
funded investigators with expertise in technology development, artificial intelligence algorithms, epidemiology,
bioinformatics, and qualitative research. My career development plan includes additional formal research training
in artificial intelligence methodology, machine learning, and clinical trials. With the support and protected time
provided by the K23 Career Development Award, I will be able to complete my proposed research and career
development goals and generate preliminary data to be competitive for independent research funding.
项目摘要/摘要
建议对Barrett食管(BE)进行内窥镜监测,以早期诊断和治疗
肿瘤(即食管腺癌和高级发育不良)。但是,肿瘤很难检测到
在常规的白光内窥镜检查(WLE;灵敏度为64%)上,单独使用WLE遗漏了26%的肿瘤。在
另一方面,共聚焦高分辨率微镜检查(CHRME)是一种低成本,便携式,可重复使用的成像
内窥镜检查时,可提供食管粘膜的微观“光学活检”图像
在专家手中,肿瘤检测的敏感性超过89%。尽管有这些优势,
CHRME的传播受到能力解释的专家微观镜家的可用性的限制
这些类似组织病理学的图像。自动解释CHRME图像的人工智能算法
可以通过向基于社区的用户提供实时计算机辅助诊断来弥合这一差距
监视设置并减少对专家审查的需求。
我的目标是开发和验证一种自动软件算法,以实时为肿瘤检测
使用Chrme。此外,我将通过结合传统的临床风险因素来优化软件算法
进行全面的风险分层。那我提出以下特定目的:目标1:技术
开发:开发一种软件算法,该算法可以自动解释BE肿瘤中的CHRME图像
检测。目标2。技术评估和优化:(a)验证CHRME自动化软件
BE中实时肿瘤检测的算法; (b)通过集成来优化自动软件算法
综合性的人口,生活方式和临床风险因素是肿瘤检测。目标3。技术
可接受性:(a)使用计算机辅助评估内窥镜药物的可接受性和经验
诊断; (b)评估自动软件算法在临床中的可行性。
该提案的总体目标是开发促进传播的人工智能算法
新型低成本技术进入社区环境,以快速,实时,准确的肿瘤检测。未来
纵向研究将重点介绍使用宏观和微观的综合风险模型的验证
预测接受监测内窥镜检查的患者的未来肿瘤风险的指标。
我的长期目标是成为早期新颖技术的独立资助的研究者
胃肠癌检测。我已经组建了一个经验丰富的心理委员会,成立了高级
资助的研究人员具有技术开发专业知识,人工智能算法,流行病学,
生物信息学和定性研究。我的职业发展计划包括其他正规研究培训
人工智能方法论,机器学习和临床试验。在支持和受保护的时间
由K23职业发展奖提供,我将能够完成我的拟议研究和职业
开发目标并产生初步数据,使其具有独立研究资金的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi Chang Tan其他文献
Mimi Chang Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mimi Chang Tan', 18)}}的其他基金
Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
- 批准号:
10449787 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
相似国自然基金
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中继通信协议下2-D网络化系统的递推状态估计研究
- 批准号:62373103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型实用化量子密码协议的高安全等级理论分析
- 批准号:12374473
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
云边端架构下联邦学习下行通信压缩算法与协议研究
- 批准号:62372487
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向实际应用的测量设备无关类量子密钥分发协议研究
- 批准号:62371244
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Autonomous Navigating Robot for Detecting Falls and Risk of Falls in Nursing Home Residents with Alzheimer's Disease /ADRD
用于检测患有阿尔茨海默病/ADRD 的疗养院居民跌倒和跌倒风险的自主导航机器人
- 批准号:
10698704 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10367144 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
- 批准号:
10449787 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10610317 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
Automated Ecological Video Identification of Physical Activity (E-VIP) Software
体力活动自动生态视频识别 (E-VIP) 软件
- 批准号:
9210068 - 财政年份:2016
- 资助金额:
$ 19.81万 - 项目类别: