BIGDATA: IA: Collaborative Research: In Situ Data Analytics for Next Generation Molecular Dynamics Workflows

BIGDATA:IA:协作研究:下一代分子动力学工作流程的原位数据分析

基本信息

  • 批准号:
    1841758
  • 负责人:
  • 金额:
    $ 98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Molecular dynamics simulations studying the classical time evolution of a molecular system at atomic resolution are widely recognized in the fields of chemistry, material sciences, molecular biology and drug design; these simulations are one of the most common simulations on supercomputers. Next-generation supercomputers will have dramatically higher performance than do current systems, generating more data that needs to be analyzed (i.e., in terms of number and length of molecular dynamics trajectories). The coordination of data generation and analysis cannot rely on manual, centralized approaches as it does now. This interdisciplinary project integrates research from various areas across programs such as computer science, structural molecular biosciences, and high performance computing to transform the centralized nature of the molecular dynamics analysis into a distributed approach that is predominantly performed in situ. Specifically, this effort combines machine learning and data analytics approaches, workflow management methods, and high performance computing techniques to analyze molecular dynamics data as it is generated, save to disk only what is really needed for future analysis, and annotate molecular dynamics trajectories to drive the next steps in increasingly complex simulations' workflows. The investigators tackle the data challenge of data analysis of molecular dynamics simulations on the next-generation supercomputers by (1) creating new in situ methods to trace molecular events such as conformational changes, phase transitions, or binding events in molecular dynamics simulations at runtime by locally reducing knowledge on high-dimensional molecular organization into a set of relevant structural molecular properties; (2) designing new data representations and extend unsupervised machine learning techniques to accurately and efficiently build an explicit global organization of structural and temporal molecular properties; (3) integrating simulation and analytics into complex workflows for runtime detection of changes in structural and temporal molecular properties; and (4) developing new curriculum material, online courses, and online training material targeting data analytics. The project's harnessed knowledge of molecular structures' transformations at runtime can be used to steer simulations to more promising areas of the simulation space, identify the data that should be written to congested parallel file systems, and index generated data for retrieval and post-simulation analysis. Supported by this knowledge, molecular dynamics workflows such as replica exchange simulations, Markov state models, and the string method with swarms of trajectories can be executed ?from the outside? (i.e., without reengineering the molecular dynamics code).
在化学,材料科学,分子生物学和药物设计的领域中,在原子分辨率下研究分子系统经典时间演变的分子动力学模拟。这些模拟是超级计算机上最常见的模拟之一。 下一代超级计算机的性能将比当前系统高,生成需要分析的更多数据(即,就分子动力学轨迹的数量和长度而言)。数据生成和分析的协调不能像现在这样依赖手动的集中式方法。 这个跨学科项目将来自计算机科学,结构分子生物科学和高性能计算等方案的各个领域的研究融为一体,以将分子动力学分析的集中性转变为一种分布式方法,该方法主要在原位进行。具体而言,这项工作结合了机器学习和数据分析方法,工作流程管理方法和高性能计算技术,以分析分子动力学数据,除非仅磁盘仅磁盘以后进行分析所需的内容,并注释分子动力学轨迹,以使越来越复杂的复杂模拟工作的下一步驱动下一步。研究人员通过(1)通过(1)创建新的原位方法来解决分子动力学模拟数据分析的数据挑战,以追踪分子事件,例如构象变化,相变,相位过渡或分子动力学模拟在运行时的分子动力学模拟中的分子动力学模拟,通过在局部降低相关分子的知识中的知识中,将相关的结构性属性降低到相关的结构属性中, (2)设计新的数据表示并扩展了无监督的机器学习技术,以准确有效地建立一个明确的结构和时间分子特性的全球组织; (3)将模拟和分析集成到复杂的工作流程中,以检测结构和时间分子特性变化的运行时; (4)开发新的课程材料,在线课程和在线培训材料针对数据分析。该项目对分子结构在运行时的转换的知识可用于引导模拟到模拟空间的更有前途的领域,确定应写入拥挤的并行文件系统的数据,以及索引生成的数据以检索和仿真分析。在这些知识的支持下,可以从外部执行分子动力学工作流,例如复制交换模拟,马尔可夫州模型和带有轨迹群的弦方法? (即,不重新设计分子动力法典)。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A survey of algorithms for transforming molecular dynamics data into metadata for in situ analytics based on machine learning methods
Identifying Structural Properties of Proteins from X-ray Free Electron Laser Diffraction Patterns
从 X 射线自由电子激光衍射图识别蛋白质的结构特性
  • DOI:
    10.1109/escience55777.2022.00017
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olaya, Paula;Caino-Lores, Silvina;Lama, Vanessa;Patel, Ria;Rorabaugh, Ariel Keller;Miyashita, Osamu;Tama, Florence;Taufer, Michela
  • 通讯作者:
    Taufer, Michela
Allosteric pathways of pH-sensitivity in a proton activated chloride channel
质子激活氯通道中 pH 敏感性的变构途径
  • DOI:
    10.1016/j.bpj.2021.11.505
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kots, Ekaterina D.;Osei-Owusu, James;Qiu, Zhaozhu;Weinstein, Harel
  • 通讯作者:
    Weinstein, Harel
Augmenting Singularity to Generate Fine-grained Workflows, Record Trails, and Data Provenance
增强奇点以生成细粒度的工作流程、记录轨迹和数据来源
Molecular determinants of pH sensing in the proton-activated chloride channel.
共 23 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

Michela Taufer其他文献

Enhancing Scientific Research with FAIR Digital Objects in the National Science Data Fabric
利用国家科学数据结构中的 FAIR 数字对象加强科学研究
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;G. Scorzelli;P. Newell;Aashish Panta;P. Bremer;Douglas Fils;Christine R. Kirkpatrick;V. Pascucci;Kathryn Mohror;J. Shalf
    Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;G. Scorzelli;P. Newell;Aashish Panta;P. Bremer;Douglas Fils;Christine R. Kirkpatrick;V. Pascucci;Kathryn Mohror;J. Shalf
  • 通讯作者:
    J. Shalf
    J. Shalf
Integrating FAIR Digital Objects (FDOs) into the National Science Data Fabric (NSDF) to Revolutionize Dataflows for Scientific Discovery
将 FAIR 数字对象 (FDO) 集成到国家科学数据结构 (NSDF) 中,彻底改变科学发现的数据流
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;†. GiorgioScorzelli;†. PaniaNewel;Aashish Panta;Timo Bremer;§. DougFils;¶. ChristineR.Kirkpatrick;Nina McCurdy;V. Pascucci;U. Knoxville;†. U.Utah;R. LLNL ‡;Research Center
    Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;†. GiorgioScorzelli;†. PaniaNewel;Aashish Panta;Timo Bremer;§. DougFils;¶. ChristineR.Kirkpatrick;Nina McCurdy;V. Pascucci;U. Knoxville;†. U.Utah;R. LLNL ‡;Research Center
  • 通讯作者:
    Research Center
    Research Center
共 2 条
  • 1
前往

Michela Taufer的其他基金

EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
  • 批准号:
    2334945
    2334945
  • 财政年份:
    2023
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
  • 批准号:
    2331152
    2331152
  • 财政年份:
    2023
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
  • 批准号:
    2223704
    2223704
  • 财政年份:
    2022
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications
协作研究:要素:SENSORY:知识发现的软件生态系统 - 土壤湿度应用的数据驱动框架
  • 批准号:
    2103845
    2103845
  • 财政年份:
    2021
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028923
    2028923
  • 财政年份:
    2020
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
  • 批准号:
    2041977
    2041977
  • 财政年份:
    2020
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
  • 批准号:
    1900888
    1900888
  • 财政年份:
    2019
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
  • 批准号:
    1841399
    1841399
  • 财政年份:
    2018
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
  • 批准号:
    1823372
    1823372
  • 财政年份:
    2018
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
  • 批准号:
    1841552
    1841552
  • 财政年份:
    2018
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

Ia型超新星及相关特殊天体研究
  • 批准号:
    12333008
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
    12203042
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
    32201791
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
    12203029
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 98万
    $ 98万
  • 项目类别:
    Standard Grant
    Standard Grant