BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic

BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案

基本信息

项目摘要

The objective of this research is to investigate artificial intelligence (AI) solutions for data collected by the Center for Remote Sensing of Ice Sheets (CReSIS) in order to provide an intelligent data understanding to automatically mine and analyze the heterogeneous dataset collected by CReSIS. Significant resources have been and will be spent in collecting and storing large and heterogeneous datasets from expensive Arctic and Antarctic fieldwork (e.g. through NSF Big Idea: Navigating the New Arctic). While traditional analyses provide some insight, the complexity, scale, and multidisciplinary nature of the data necessitate advanced intelligent solutions. This project will allow domain scientists to automatically answer questions about the properties of the data, including ice thickness, ice surface, ice bottom, internal layers, ice thickness prediction, and bedrock visualization. The planned approach will advance the broader big data research community by improving the efficiency of deep learning methods and in the investigation of methods to merge data-driven AI approaches with application-specific domain knowledge. Special attention will be given to women and minority involvement in the research and the project will develop new course materials for several classes in AI at a Hispanic and minority serving institute.In polar radar sounder imagery, the delineation of the ice top and ice bottom and layering within the ice is essential for monitoring and modeling the growth of ice sheets and sea ice. The optimal approach to this problem should merge the radar sounder data with physical ice models and related datasets such as ice coverage and concentration maps, spatiotemporal meteorological maps, and ice velocity. Rather than directly engineering specific relations into the image analysis that require many parameters to be defined and tuned, data-dependent approaches let the machine learn these relationships. To devise intelligent solutions for navigating the big data from the Arctic and Antarctic and to scale up the current and traditional techniques to big data, this project plans several approaches for detecting ice surface, bottom, internal layers, 3D modeling of bedrock and spatial-temporal monitoring of the ice surface: 1) Devise new methodologies based on hybrid networks combining machine learning with traditional domain specific knowledge and transforming the entire deep learning network to the time-frequency domain. 2) Equip the machine with information that is not visible to the human eye or that is hard for a human operator to consider simultaneously, to be able to detect internal layers and 3D basal topography on a large scale. Using the results of the feature tracking of the ice surface in radar altimetry, the research effort will also develop new data-dependent techniques for predicting the ice thickness for following years based on deep recurrent neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的目的是研究冰盖遥感中心 (CReSIS) 收集的数据的人工智能 (AI) 解决方案,以便提供智能数据理解,以自动挖掘和分析 CReSIS 收集的异构数据集。已经并将花费大量资源来收集和存储来自昂贵的北极和南极实地工作的大型异构数据集(例如通过 NSF Big Idea:导航新北极)。虽然传统分析提供了一些见解,但数据的复杂性、规模和多学科性质需要先进的智能解决方案。该项目将允许领域科学家自动回答有关数据属性的问题,包括冰厚度、冰表面、冰底部、内层、冰厚度预测和基岩可视化。计划中的方法将通过提高深度学习方法的效率以及研究将数据驱动的人工智能方法与特定应用领域知识相融合的方法来推动更广泛的大数据研究社区的发展。将特别关注妇女和少数族裔参与研究,该项目将为西班牙裔和少数族裔服务机构的几个人工智能课程开发新的课程材料。在极地雷达探测仪图像中,冰顶和冰底的描绘以及冰内的分层对于监测和模拟冰盖和海冰的生长至关重要。解决这个问题的最佳方法应该将雷达探测仪数据与物理冰模型和相关数据集(例如冰覆盖范围和浓度图、时空气象图和冰速度)合并。数据依赖的方法不是直接将特定关系设计到需要定义和调整许多参数的图像分析中,而是让机器学习这些关系。为了设计导航北极和南极大数据的智能解决方案,并将当前和传统技术扩展到大数据,该项目计划采用多种方法来检测冰面、底部、内部层、基岩和时空的 3D 建模冰面监测:1)设计基于混合网络的新方法,将机器学习与传统领域特定知识相结合,并将整个深度学习网络转换到时频域。 2)为机器配备人眼不可见或人类操作员难以同时考虑的信息,以能够大范围检测内层和3D基底形貌。利用雷达测高中冰面特征跟踪的结果,该研究工作还将开发新的数据依赖技术,用于基于深度循环神经网络预测未来几年的冰厚度。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network
  • DOI:
    10.3390/s19245479
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rahnemoonfar;Jimmy Johnson;J. Paden
  • 通讯作者:
    M. Rahnemoonfar;Jimmy Johnson;J. Paden
Refining Ice Layer Tracking through Wavelet combined Neural Networks
通过小波组合神经网络完善冰层跟踪
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Debvrat Varshney, Masoud Yari
  • 通讯作者:
    Debvrat Varshney, Masoud Yari
Multi-Scale and Temporal Transfer Learning for Automatic Tracking of Internal Ice Layers
Smart Tracking of Internal Layers of Ice in Radar Data via Multi-Scale Learning
通过多尺度学习智能跟踪雷达数据中的冰内层
Deep Learning on Airborne Radar Echograms for Tracing Snow Accumulation Layers of the Greenland Ice Sheet
  • DOI:
    10.3390/rs13142707
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Varshney;M. Rahnemoonfar;M. Yari;J. Paden;O. Ibikunle;Jilu Li
  • 通讯作者:
    D. Varshney;M. Rahnemoonfar;M. Yari;J. Paden;O. Ibikunle;Jilu Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maryam Rahnemoonfar其他文献

Physics-Informed Machine Learning for Prediction of Sea Ice Dynamics Derived from Spaceborne Passive Microwave Data
基于物理的机器学习用于根据星载被动微波数据预测海冰动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Younghyun Koo;Maryam Rahnemoonfar
  • 通讯作者:
    Maryam Rahnemoonfar
TinyVQA: Compact Multimodal Deep Neural Network for Visual Question Answering on Resource-Constrained Devices
TinyVQA:紧凑型多模态深度神经网络,用于资源受限设备上的视觉问答
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hasib;Argho Sarkar;A. Gangopadhyay;Maryam Rahnemoonfar;T. Mohsenin
  • 通讯作者:
    T. Mohsenin
Graph Neural Networks for Emulation of Finite-Element Ice Dynamics in Greenland and Antarctic Ice Sheets
用于模拟格陵兰岛和南极冰盖有限元冰动力学的图神经网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Younghyun Koo;Maryam Rahnemoonfar
  • 通讯作者:
    Maryam Rahnemoonfar
Learning Spatio-Temporal Patterns of Polar Ice Layers With Physics-Informed Graph Neural Network
利用物理信息图神经网络学习极地冰层的时空模式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zesheng Liu;Maryam Rahnemoonfar
  • 通讯作者:
    Maryam Rahnemoonfar
Graph Neural Network as Computationally Efficient Emulator of Ice-sheet and Sea-level System Model (ISSM)
图神经网络作为冰盖和海平面系统模型 (ISSM) 的计算高效模拟器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Younghyun Koo;Maryam Rahnemoonfar
  • 通讯作者:
    Maryam Rahnemoonfar

Maryam Rahnemoonfar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maryam Rahnemoonfar', 18)}}的其他基金

BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1838230
  • 财政年份:
    2018
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant

相似国自然基金

甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
核因子IA通过调节破骨细胞分化影响骨稳态和骨量的作用及其机制研究
  • 批准号:
    82072389
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 58.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了