BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
基本信息
- 批准号:1947584
- 负责人:
- 金额:$ 58.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to investigate artificial intelligence (AI) solutions for data collected by the Center for Remote Sensing of Ice Sheets (CReSIS) in order to provide an intelligent data understanding to automatically mine and analyze the heterogeneous dataset collected by CReSIS. Significant resources have been and will be spent in collecting and storing large and heterogeneous datasets from expensive Arctic and Antarctic fieldwork (e.g. through NSF Big Idea: Navigating the New Arctic). While traditional analyses provide some insight, the complexity, scale, and multidisciplinary nature of the data necessitate advanced intelligent solutions. This project will allow domain scientists to automatically answer questions about the properties of the data, including ice thickness, ice surface, ice bottom, internal layers, ice thickness prediction, and bedrock visualization. The planned approach will advance the broader big data research community by improving the efficiency of deep learning methods and in the investigation of methods to merge data-driven AI approaches with application-specific domain knowledge. Special attention will be given to women and minority involvement in the research and the project will develop new course materials for several classes in AI at a Hispanic and minority serving institute.In polar radar sounder imagery, the delineation of the ice top and ice bottom and layering within the ice is essential for monitoring and modeling the growth of ice sheets and sea ice. The optimal approach to this problem should merge the radar sounder data with physical ice models and related datasets such as ice coverage and concentration maps, spatiotemporal meteorological maps, and ice velocity. Rather than directly engineering specific relations into the image analysis that require many parameters to be defined and tuned, data-dependent approaches let the machine learn these relationships. To devise intelligent solutions for navigating the big data from the Arctic and Antarctic and to scale up the current and traditional techniques to big data, this project plans several approaches for detecting ice surface, bottom, internal layers, 3D modeling of bedrock and spatial-temporal monitoring of the ice surface: 1) Devise new methodologies based on hybrid networks combining machine learning with traditional domain specific knowledge and transforming the entire deep learning network to the time-frequency domain. 2) Equip the machine with information that is not visible to the human eye or that is hard for a human operator to consider simultaneously, to be able to detect internal layers and 3D basal topography on a large scale. Using the results of the feature tracking of the ice surface in radar altimetry, the research effort will also develop new data-dependent techniques for predicting the ice thickness for following years based on deep recurrent neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是研究由冰盖遥感中心(CRESAS)收集的数据的人工智能(AI)解决方案,以提供智能数据理解,以自动挖掘并分析CRESAS收集的异质数据集。从昂贵的北极和南极实地调查中收集和存储大型和异质数据集(例如,通过NSF Big Ideas:浏览新北极),将花费大量资源。尽管传统分析提供了一些洞察力,但数据的复杂性,规模和多学科性质需要先进的智能解决方案。该项目将允许领域科学家自动回答有关数据特性的问题,包括冰层,冰表面,冰底,内层,冰厚度预测和基岩可视化。计划中的方法将通过提高深度学习方法的效率以及对数据驱动的AI方法与应用特定的领域知识合并的方法来提高更广泛的大数据研究界。将特别关注妇女和少数参与研究的参与,该项目将在西班牙裔和少数派服务学院为AI的多个类别开发新课程材料。在极地雷达音响器图像中,冰层和冰底部的划定以及冰中的分层对于监测和模拟了冰块和海冰的生长至关重要。解决此问题的最佳方法应将雷达声音数据与物理冰模型和相关数据集合并,例如冰覆盖和浓度图,时空气象图和冰速度。与其直接在图像分析中直接设计特定的关系,该关系需要定义和调整许多参数,而是让机器学习这些关系。为了设计智能解决方案,以从北极和南极导航大数据,并扩大当前和传统的技术到大数据的最新技术,该项目计划了几种方法,用于检测冰面,底部,内部,内部,内部,3D模型,底层建模和空间 - 周期性的模型,以及基于冰层的深入研究,以将新的方法进行组合:1)时频域。 2)为机器配备人眼看不到的信息,或者人类操作员很难同时考虑,能够大规模检测内部层和3D基础形态。利用雷达高度测定中冰表面的特征跟踪的结果,研究工作还将开发新的与数据相关的技术,以根据深层复发的神经网络来预测接下来几年的冰厚度。这项奖项反映了NSF的法定任务,并已通过评估该基金会的知识功能和广泛的影响来评估NSF的法定任务,并被认为是值得的。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network
- DOI:10.3390/s19245479
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:M. Rahnemoonfar;Jimmy Johnson;J. Paden
- 通讯作者:M. Rahnemoonfar;Jimmy Johnson;J. Paden
Refining Ice Layer Tracking through Wavelet combined Neural Networks
通过小波组合神经网络完善冰层跟踪
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Debvrat Varshney, Masoud Yari
- 通讯作者:Debvrat Varshney, Masoud Yari
Multi-Scale and Temporal Transfer Learning for Automatic Tracking of Internal Ice Layers
- DOI:10.1109/igarss39084.2020.9323758
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:M. Yari;M. Rahnemoonfar;J. Paden
- 通讯作者:M. Yari;M. Rahnemoonfar;J. Paden
Smart Tracking of Internal Layers of Ice in Radar Data via Multi-Scale Learning
通过多尺度学习智能跟踪雷达数据中的冰内层
- DOI:10.1109/bigdata47090.2019.9006083
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yari, Masoud;Rahnemoonfar, Maryam;Paden, John;Oluwanisola, Ibikunle;Koenig, Lora;Montgomery, Lynn
- 通讯作者:Montgomery, Lynn
Deep Learning on Airborne Radar Echograms for Tracing Snow Accumulation Layers of the Greenland Ice Sheet
- DOI:10.3390/rs13142707
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:D. Varshney;M. Rahnemoonfar;M. Yari;J. Paden;O. Ibikunle;Jilu Li
- 通讯作者:D. Varshney;M. Rahnemoonfar;M. Yari;J. Paden;O. Ibikunle;Jilu Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Rahnemoonfar其他文献
Physics-Informed Machine Learning for Prediction of Sea Ice Dynamics Derived from Spaceborne Passive Microwave Data
基于物理的机器学习用于根据星载被动微波数据预测海冰动力学
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Younghyun Koo;Maryam Rahnemoonfar - 通讯作者:
Maryam Rahnemoonfar
Learning Spatio-Temporal Patterns of Polar Ice Layers With Physics-Informed Graph Neural Network
利用物理信息图神经网络学习极地冰层的时空模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zesheng Liu;Maryam Rahnemoonfar - 通讯作者:
Maryam Rahnemoonfar
Graph Neural Network as Computationally Efficient Emulator of Ice-sheet and Sea-level System Model (ISSM)
图神经网络作为冰盖和海平面系统模型 (ISSM) 的计算高效模拟器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Younghyun Koo;Maryam Rahnemoonfar - 通讯作者:
Maryam Rahnemoonfar
TinyVQA: Compact Multimodal Deep Neural Network for Visual Question Answering on Resource-Constrained Devices
TinyVQA:紧凑型多模态深度神经网络,用于资源受限设备上的视觉问答
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hasib;Argho Sarkar;A. Gangopadhyay;Maryam Rahnemoonfar;T. Mohsenin - 通讯作者:
T. Mohsenin
Graph Neural Networks for Emulation of Finite-Element Ice Dynamics in Greenland and Antarctic Ice Sheets
用于模拟格陵兰岛和南极冰盖有限元冰动力学的图神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Younghyun Koo;Maryam Rahnemoonfar - 通讯作者:
Maryam Rahnemoonfar
Maryam Rahnemoonfar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryam Rahnemoonfar', 18)}}的其他基金
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1838230 - 财政年份:2018
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
相似国自然基金
Ia型超新星及相关特殊天体研究
- 批准号:12333008
- 批准年份:2023
- 资助金额:239.00 万元
- 项目类别:重点项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:12203042
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:32201791
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
- 批准号:12203029
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
2034479 - 财政年份:2020
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 58.93万 - 项目类别:
Standard Grant