SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records

SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架

基本信息

  • 批准号:
    1836945
  • 负责人:
  • 金额:
    $ 4.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This project builds a novel privacy-preserving framework with both new algorithms and software tools to: 1) evaluate the effectiveness of current identifier-suppression techniques for Electronic Healthcare Record (EHR) data; 2) de-identify and anonymize EHR data to protect personal information without significantly reducing the utility of data for secondary data analysis. The proposed techniques eliminate the violation of privacy through re-identification, and facilitate the secondary usage, sharing, publishing and exchange of healthcare data without the risk of breaching protected health information (PHI). This new privacy-preserving framework injects the ICD-9-CM-aware constraint-based privacy-preserving techniques into EHRs to eliminate the threat of identifying an individual in the secondary use of research data. The proposed technique and development can be readily adapted to other types of healthcare databases in order to ensure privacy and prevent re-identification of published data. The project produces groundbreaking algorithms and tools for identifying privacy leakages and protecting personal privacy information in EHRs to improve healthcare data publishing. New privacy-preserving techniques developed in this project lead towards a new type of healthcare science for EHRs. The project also delivers fundamental advancements to engineering by showing how to integrate biomedical domain knowledge with a computationally advanced quantitative framework for preserving the privacy of published EHRs. HIPAA has established protocols and industry standards to protect the confidentiality of PHI. However, our results demonstrate that, even with regard to health data that meets HIPAA requirements, the risk of re-identification is not completely eliminated. By identifying the security vulnerabilities inherent in the HIPAA standards, our research develops a more rigorous security standard that greatly improves privacy protections by applying state-of-the-art algorithms. The developed data privacy-preserving framework has significant implications for the future of US healthcare data publishing and related applications. Specifically, the transition from paper records to EHRs has accelerated significantly since the passage of the HITECH Act of 2009. The Act provides monetary incentives for the "meaningful use" of EHRs. As a result, the quality and quantity of healthcare databases has risen sharply, which has renewed the public's fear of a breach of privacy of their medical information. This research work is innovative and crucial not only for facilitating EHR data publishing, but also for enhancing the development and promotion of EHRs. At the educational front, this project facilitates the development of novel educational tools to construct entirely new courses and laboratory classes for healthcare, data privacy, data mining, and a wide range of applications. As a result, it enhances the current instructional methods for teaching data privacy and data mining, and has compelling biomedical and healthcare applications that can facilitate learning of computational algorithms. This project involves both undergraduate and graduate students in the three participating institutions. The PIs make a strong effort to engage minority graduate and undergraduate students in research activities in order to increase their exposure to cutting-edge research.
该项目使用新算法和软件工具构建了一个新颖的隐私保护框架,以:1)评估当前电子医疗记录(EHR)数据标识符抑制技术的有效性; 2) 对 EHR 数据进行去识别化和匿名化处理,以保护个人信息,同时不会显着降低数据用于二次数据分析的效用。所提出的技术通过重新识别消除了对隐私的侵犯,并促进医疗数据的二次使用、共享、发布和交换,而不存在破坏受保护的健康信息(PHI)的风险。这种新的隐私保护框架将 ICD-9-CM 感知的基于约束的隐私保护技术注入 EHR,以消除在研究数据的二次使用中识别个人的威胁。所提出的技术和开发可以很容易地适应其他类型的医疗保健数据库,以确保隐私并防止已发布数据的重新识别。该项目开发了突破性的算法和工具,用于识别隐私泄露并保护电子病历中的个人隐私信息,以改善医疗数据发布。该项目中开发的新隐私保护技术引领了电子病历的新型医疗保健科学。该项目还展示了如何将生物医学领域知识与计算先进的定量框架相结合,以保护已发布的电子病历的隐私,从而为工程带来了根本性的进步。 HIPAA 已制定协议和行业标准来保护 PHI 的机密性。然而,我们的结果表明,即使健康数据符合 HIPAA 要求,重新识别的风险也没有完全消除。通过识别 HIPAA 标准中固有的安全漏洞,我们的研究开发了更严格的安全标准,通过应用最先进的算法大大提高了隐私保护。开发的数据隐私保护框架对美国医疗数据发布和相关应用的未来具有重大影响。具体而言,自 2009 年《HITECH 法案》通过以来,从纸质记录向 EHR 的转变已显着加速。该法案为 EHR 的“有意义的使用”提供了金钱激励。结果,医疗保健数据库的质量和数量急剧上升,这再次引发了公众对其医疗信息隐私遭到侵犯的担忧。这项研究工作具有创新性,不仅对于促进电子病历数据发布,而且对于加强电子病历的发展和推广也至关重要。在教育方面,该项目促进了新型教育工具的开发,为医疗保健、数据隐私、数据挖掘和广泛的应用构建全新的课程和实验室课程。因此,它增强了当前数据隐私和数据挖掘教学的教学方法,并具有引人注目的生物医学和医疗保健应用程序,可以促进计算算法的学习。该项目涉及三个参与机构的本科生和研究生。 PI 大力吸引少数族裔研究生和本科生参与研究活动,以增加他们接触前沿研究的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Computational Issues in Biomedical Nanometrics and Nano-Materials
生物医学纳米计量学和纳米材料的计算问题
  • DOI:
    10.4028/www.scientific.net/jnanor.1.50
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Heng Huang;Li Shen;J. Ford;Yu Hang Wang;Yu Rong Xu
  • 通讯作者:
    Yu Rong Xu
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究
Experimental study on liquid immersion preheating of lithium-ion batteries under low temperature environment
低温环境下锂离子电池液浸预热实验研究
  • DOI:
    10.1016/j.csite.2024.104759
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jiakang Bao;Zhi;Wei;Lei Wei;Jizu Lyu;Yang Li;Heng Huang;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

MYB、NAC等转录因子响应相对低温调控扩展蛋白EXP控制桂花花开放的分子机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
血管紧张素II在脑缺血再灌注损伤中的作用机制与新型AT1受体拮抗剂—化合物EXP-2528的保护作用研究
  • 批准号:
    30572187
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602394
  • 财政年份:
    2016
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
  • 批准号:
    1664815
  • 财政年份:
    2016
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602198
  • 财政年份:
    2016
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502172
  • 财政年份:
    2015
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502273
  • 财政年份:
    2015
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了