Collaborative Research: Elements: Software: NSCI: Chrono-An open-source simulation platform for computational dynamics problems

合作研究:要素:软件:NSCI:Chrono-计算动力学问题的开源仿真平台

基本信息

项目摘要

This project seeks to augment modeling and solution methods employed by Chrono, an open-source computer simulation platform for multi-body dynamics (MBD) and fluid-solid interaction (FSI) problems. Chrono will be able to capture dynamics at various size and time scales spanning from millisecond (impact phenomena) to decades (geophysics). These performance levels open up new directions of research in several fields. Chrono is widely used and further developed by other users and has an active forum with more than 250 registered users currently. This project will enhance the richness of Chrono's modeling features, sound numerical solution foundation, and leverage of emerging hardware architectures to elevate this simulation capability to the status of ready-to-use, open-source, best-in-class computational dynamics platform. Chrono has been used by universities, national labs, and industry. Over the past two years, various groups have used Chrono in extraterrestrial applications, machine learning in robotics, image processing, pattern recognition and computer vision, mechanical watch design, architectural studies, autonomous vehicles, fluid-solid interaction applications, wind turbine dynamics, next generation space suit design, oil extraction and accident mitigation, hardware-in-the-loop simulation, etc. Finally, this project will engage high-school students from under-represented groups in a six-day residential camp run (now at its 12th edition) and will train a group of undergraduate students from California State University at University of Wisconsin-Madison through a new residential program that will introduce them to the use of Chrono in simulation-based robotics design.This project seeks to augment modeling and solution methods employed by Chrono, a BSD3 open-source simulation platform for multi-body dynamics (MBD) and fluid-solid interaction (FSI) problems. The software infrastructure enhancements in this project aim at sustaining teraflops-grade simulation of MBD and FSI systems with more than ten billion degrees of freedom; i.e., two to three orders of magnitude beyond conventional simulations today. In order to increase adoption and impact, the performance levels aimed at will be reached on budget/affordable hardware that leverages GPU computing. Chrono will be able to capture micro-, meso- and macro-scale dynamics on time scales spanning from millisecond (impact phenomena) to decades (geophysics). The intellectual merit of this project stems from the following key ideas: (i) with an eye towards the sunsetting of Moore's law, the software design solution embraces a scalable multi-GPU hardware layout poised to solve effectively large multi-physics problems; (ii) a hardware-aware software design paradigm, which aggressively reduces data storage and movement, will allow budget-conscious hardware systems to run billion-degree-of-freedom models, or, for models of similar size, accomplish a two orders of magnitude speedup when compared to the state of the art; (iii) a unified Lagrangian formulation for both solid and fluid dynamics is implemented in one software platform that can simulate complex multi-physics (coupled) problems; and (iv) Chrono promotes an alternative approach for handling friction and contact that revolves around the concept of differential variational inequality and thus avoids the small integration time step and numerical instability issues that hinder most of the existing many-body dynamics simulators. In relation to its educational and outreach initiatives, this project: (a) will be instrumental in establishing a new University of Wisconsin-Madison undergraduate course that introduces students to computing concepts subsequently refined in a graduate advanced computing class; (b) will promote the discipline of Computational Science and Computational Dynamics at high-school and undergraduate levels via two yearly residential summer programs for under-represented students; (c) will expand an advanced computing forum that facilitates technology transfer to industry and promotes Chrono adoption; and, (d) will strengthen ongoing collaborations that critically depend on Chrono in robotics, geomechanics, and soft-matter physics. Chrono is presently cloned on average 10 times every day, has been forked from its public repository by more than 150 parties, and has an active forum with more than 250 registered users. This project will enhance the richness of Chrono modeling features, improve its numerical solution foundation, and leverage emerging hardware architectures to elevate this simulation capability to the status of ready-to-use, open-source, best-in-class computational dynamics platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在增强由Chrono采用的建模和解决方案方法,Chrono是一个用于多体动力学(MBD)和流体固定相互作用(FSI)问题的开源计算机仿真平台。 Chrono将能够以各种大小和时间尺度捕获从毫秒(影响现象)到数十年(地球物理)的动力学。这些绩效水平在几个领域开辟了新的研究方向。 Chrono被其他用户广泛使用并进一步开发,并拥有一个活动的论坛,目前拥有250多名注册用户。该项目将增强Chrono的建模功能,声音数值解决方案基础以及新兴硬件体系结构的杠杆作用,以将这种仿真能力提升到现成的,开源的,最佳的,最佳的计算动力学平台的状态。 Chrono已被大学,国家实验室和工业界使用。 Over the past two years, various groups have used Chrono in extraterrestrial applications, machine learning in robotics, image processing, pattern recognition and computer vision, mechanical watch design, architectural studies, autonomous vehicles, fluid-solid interaction applications, wind turbine dynamics, next generation space suit design, oil extraction and accident mitigation, hardware-in-the-loop simulation, etc. Finally, this project will engage high-school students from under-represented groups在为期六天的住宅营地跑步(现为第12版)中,并将通过一项新的住宅计划培训来自加利福尼亚州立大学麦迪逊分校的一群本科生,将通过一项新的住宅计划介绍他们在基于模拟的机器人机器人中使用Chrono在基于模拟的机器人中使用,该项目旨在提高基于Chrono的模型和替代方法,以增强BSD3 Optial Simpulation,BSD3 Optial Simpuly,BSD3 BSD3 33流体 - 固相互作用(FSI)问题。该项目中的软件基础设施增强功能旨在维持具有超过100亿自由度的MBD和FSI系统的TERAFLOPS级模拟;即,如今的传统模拟超出了两个到三个数量级。为了提高采用和影响,将根据利用GPU计算的预算/负担得起的硬件达到绩效水平。 Chrono将能够按时间尺度捕获从毫秒(影响现象)到数十年(地球物理学)的时间尺度上的微型,中尺和宏观尺度动力学。该项目的智力优点源于以下关键思想:(i)关注摩尔定律的日落,软件设计解决方案包含了可扩展的多GPU硬件布局,该布局有效地解决了有效的大型多物理问题; (ii)一种可以积极地减少数据存储和移动的硬件感知软件设计范式,将允许具有预算意识的硬件系统运行十亿度自由度模型,或者对于类似尺寸的模型,与艺术状态相比,实现了两个数量级的速度。 (iii)在一个软件平台中实现了用于固体和流体动力学的统一的拉格朗日公式,可以模拟复杂的多物理(耦合)问题; (iv)Chrono促进了一种处理摩擦和接触的替代方法,该方法围绕着差异性不平等的概念旋转,从而避免了较小的整合时间步骤和数值不稳定性问题,从而阻碍了大多数现有的多体动力学模拟器。关于其教育和宣传计划,该项目:(a)将有助于建立新的威斯康星大学麦迪逊大学大学课程,该课程将学生介绍了随后在研究生高级计算机课程中精炼的计算概念; (b)将通过为不足的学生提供的两个年度住宅夏季计划来促进高中和本科级别的计算科学和计算动力学学科; (c)将扩大一个高级计算论坛,该论坛有助于技术转移到行业并促进计时采用;并且(d)将加强持续的合作,这些合作在机器人技术,地球力学和软性物理学中都取决于计时。 Chrono目前每天平均每天将10次克隆,已由150多个聚会从其公共存储库分叉,并且有一个活跃的论坛,有250多个注册用户。该项目将增强计时建模功能的丰富性,提高其数值解决方案基础,并利用新兴的硬件体系结构将这种模拟能力提升到现成的,开放式,最佳的,级别的计算动力学平台的状态。该奖项反映了NSF的法定任务,并通过评估了基金会的范围来反映了NSF的法定任务,并通过基金会的范围进行了评估和宽广的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Medina其他文献

Domain modeling as a basis for building a meshing tool software product line
  • DOI:
    10.1016/j.advengsoft.2014.01.011
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pedro O. Rossel;María Cecilia Bastarrica;Nancy Hitschfeld-Kahler;Violeta Díaz;Mario Medina
  • 通讯作者:
    Mario Medina
Transmisión de Brucella abortus en becerras menores de tres meses diagnosticadas por medio de las pruebas de tarjeta e inmunodifusión radial en dos hatos lecheros del estado de Querétaro
布鲁氏菌流产传播是在塔吉塔中部的三段诊断中进行的,并且是在克雷塔罗州的放射状免疫扩散中进行的
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iván Carrisoza;Mario Medina;Erika Gabriela Palomares;Efrén Díaz
  • 通讯作者:
    Efrén Díaz
A High-Fidelity Percutaneous Model Used to Demonstrate ECMO Cannulation.
用于演示 ECMO 插管的高保真经皮模型。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Palmer;Marit Aspenleiter;Jose da Silva;Luciana da Fonseca da Silva;Mario Medina;Melissa Grayson;V. Morell;Amber Palmer;Mahesh Sharma;Jamie Stebler;M. Viegas
  • 通讯作者:
    M. Viegas

Mario Medina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Medina', 18)}}的其他基金

PATH: Optimal Integration of Renewable and Phase Change Materials in Insulation Systems for the Reduction of Thermal Loads Across Building Walls and Ceilings
PATH:可再生材料和相变材料在隔热系统中的优化集成,以减少建筑物墙壁和天花板的热负荷
  • 批准号:
    0533362
  • 财政年份:
    2005
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant

相似国自然基金

微量元素钒调控能量代谢用于监控结直肠癌治疗及转移抑制的机制研究
  • 批准号:
    62305121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
稻米镁元素积累新主效QTL克隆和功能研究及其育种利用
  • 批准号:
    32372095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
杨柳坪超大型Cu-Ni-PGE矿床硫化物熔体固化过程铂族元素地球化学行为精细研究
  • 批准号:
    42303019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深海沉积物中稀土元素超常富集机制――基于富稀土沉积物与水岩实验的对比研究
  • 批准号:
    42372116
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于可控同位素中子源的月表元素探测机制与载荷实现关键技术研究
  • 批准号:
    42374226
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 7.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了